在列表中检索

共检索到 2

Solar radiation in plateau permafrost regions is strong. The asphalt pavement strongly absorbs and slowly dissipates heat, leading to significant heat accumulation on the pavement. This accumulation disturbs the underlying permafrost and eventually causes serious pavement damage. To improve the heat resistance and dissipation capabilities of asphalt pavement, a nanofluid directional heat conduction structure (N-DHCS) was suggested and analyzed in this paper. The designed structure can resist heat in the daytime due to the low thermal conductivity of liquid and dissipates heat at night through natural convection. The finite element method and laboratory irradiation experiment were employed to performed thermal analyses of N-DHCS. The results demonstrated that establishing the N-DHCS in asphalt pavements can enhance active heat dissipation capacity, which is beneficial for protecting the frozen soil in plateau permafrost regions.

期刊论文 2025-05-04 DOI: 10.1080/14680629.2024.2389441 ISSN: 1468-0629

The Qinghai-Tibet Plateau (QTP) is experiencing severe permafrost degradation, which can affect the hydrological and biogeochemical processes. Yet how the permafrost change affects riverine carbon export remains uncertain. Here, we investigated the seasonal variations of dissolved inorganic and organic carbon (DIC and DOC) during flow seasons in a watershed located in the central QTP permafrost region. The results showed that riverine DIC concentrations (27.81 +/- 9.75 mg L-1) were much higher than DOC concentrations (6.57 +/- 2.24 mg L-1). DIC and DOC fluxes were 3.95 and 0.94 g C m(-2) year(-1), respectively. DIC concentrations increased from initial thaw (May) to freeze period (October), while DOC concentrations remained relatively steady. Daily dissolved carbon concentrations were more closely correlated with baseflow than that with total runoff. Spatially, average DIC and DOC concentrations were positively correlated with vegetation coverage but negatively correlated with bare land coverage. DIC concentrations increased with the thawed and frozen depths due to increased soil interflow, more thaw-released carbon, more groundwater contribution, and possibly more carbonate weathering by soil CO2 formed carbonic acid. The DIC and DOC fluxes increased with thawed depth and decreased with frozen layer thickness. The seasonality of riverine dissolved carbon export was highly dependent on active layer thawing and freezing processes, which highlights the importance of changing permafrost for riverine carbon export. Future warming in the QTP permafrost region may alter the quantity and mechanisms of riverine carbon export.

期刊论文 2019-06-17 DOI: 10.7717/peerj.7146 ISSN: 2167-8359
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页