Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (delta 2H and delta 18O) and leaf delta 13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this researchemphasizes the critical influence of water source selection on plant succession dynamics while elucidating un- derlying mechanisms linking succession with plant water consumption.
Rapid warming is a major threat for the alpine biodiversity but, at the same time, accelerated glacial retreat constitutes an opportunity for taxa and communities to escape range contraction or extinction. We explored the first steps of plant primary succession after accelerated glacial retreat under the assumption that the first few years are critical for the success of plant establishment. To this end, we examined plant succession along a very short post-glacial chronosequence in the tropical Andes of Ecuador (2-13 years after glacial retreat). We recorded the location of all plant individuals within an area of 4,200 m(2) divided into plots of 1 m(2). This sampling made it possible to measure the responses of the microenvironment, plant diversity and plants traits to time since the glacial retreat. It also made it possible to produce species-area curves and to estimate positive interactions between species. Decreases in soil temperature, soil moisture, and soil macronutrients revealed increasing abiotic stress for plants between two and 13 years after glacial retreat. This increasing stress seemingly explained the lack of positive correlation between plant diversity and time since the glacial retreat. It might explain the decreasing performance of plants at both the population (lower plant height) and the community levels (lower species richness and lower accumulation of species per area). Meanwhile, infrequent spatial associations among plants indicated a facilitation deficit and animal-dispersed plants were almost absent. Although the presence of 21 species on such a small sampled area seven years after glacial retreat could look like a colonization success in the first place, the increasing abiotic stress may partly erase this success, reducing species richness to 13 species after 13 years and increasing the frequency of patches without vegetation. This fine-grain distribution study sheds new light on nature's responses to the effects of climate change in cold biomes, suggesting that faster glacial retreat would not necessarily result in accelerated plant colonization. Results are exploratory and require site replications for generalization.
Primary succession in deglaciated region is the ideal environment for examining soil respiration (SR). In this study, we measured SR and employed a process-oriented model, Forest-denitrification-decomposition (DNDC), to study responses of SR to climate change in three primary successional stages in deglaciated region on Gongga Mountain, China. Stand types included a hardwood stand (S1), a coniferous and broad-leaved mixed forest stand (S2), and a mature stand of Abies fabri (Mast.) Craib (S3). Four climate scenarios (Baseline, B1, A1B, A2) reported by the Intergovernmental Panel on Climate Change were investigated. According to measured values, there was substantial temporal variation (coefficient of variation ranged from 49.7% in S1 to 61.4% in S3) and spatial variation (annual SR ranged from 2657 +/- 944 kg C ha(1) in S1 to 9228 +/- 1743 kg C ha(1) in S3) in the data. The modeled results showed that climate change affected the different stages to different extent in this region. Climate change will weaken the carbon sink strength of forest ecosystems in deglaciated region. The results have provided a better understanding on patterns of SR, and provided useful information on the magnitude and the response of SR to climate change in deglaciated region.