共检索到 4

Most studies attribute the glacier mass balance within High Mountain Asia (HMA) to climate change, ignoring the influence of its complex terrain. Knowledge of the influence of this complex terrain is crucial for understanding the spatial variability in its mass balance. However, there is a lack of any systematic assessment of this influence across HMA. Therefore, in this study, we used the glacier outlines and raster data (SRTM DEM, slope and aspect) to calculate the topographic shading of all 97,965 glaciers within HMA during the ablation period, which is regarded as a major index of the influence of complex terrain on the mass balance. The results showed that 27.19% of HMA glacier area was subjected to topographic shading, and regional differences were significant with respect to both their altitudinal and spatial distributions. The topographic shading contributed to the protection of the smallest glaciers from solar illumination. Furthermore, we found a significant correlation between the topographic shading and mass balance in these small north-facing glaciers. However, these small glaciers were most prevalent in the north-facing orientation, especially in West Kunlun, East Kunlun, Inner Tibet Plateau and Qilian Shan, where shading was found to increase with decreases in the glacier area. This indicates that complex terrain can affect the spatial distribution of the mass balance by altering the solar illumination pattern.

期刊论文 2023-12-01 DOI: http://dx.doi.org/10.3390/rs14071576

Advanced knowledge of glacier ice volume is vital for water resource assessment. Previous studies have focused on the estimation of ice volume, but the quantitative understanding of the spatial variability of ice volume across High Mountain regions is currently lacking. Here, we used global-scale ice thickness, debris cover and equilibrium line data to analyse ice-volume differences at various scales across High Mountain Asia (HMA). The results showed that 6.3% of the HMA glaciers are covered by debris, with debris area and volume accounting for 9% and 13.8% of the total glacier area and volume, respectively. An average debris-cover volume ratio of 13% was observed. The spatial distribution of ice volume across the HMA varies considerably from region to region. The ice volume is predominately distributed on north-facing slopes and accounts for approximately 38% of the total. It is very common in Altay and Sayan, East Tian Shan, West Kunlun, East Kunlun and Qilian Shan. Meanwhile, ice volumes in the Himalayas and Hengduan Shan are mainly distributed on the southeast aspect. Relative weight functions showed that glacier area, maximum length and average thickness are closely related to ice volume, with average relative weights of 63.7%, 22.5% and 9.8%, respectively. This study is important for the evolution of glacier volume and water resource assessment.

期刊论文 2022-01-01 DOI: http://dx.doi.org/10.1016/j.accre.2023.08.004 ISSN: 1674-9278

While the composition and diversity of soil microbial communities play a central and essential role in biogeochemical cycling of nutrients, they are known to be shaped by the physical and chemical properties of soils and various environmental factors. This study investigated the composition and diversity of microbial communities in 48 samples of seasonally frozen soils collected from 16 sites in an alpine wetland region (Lhasa River basin) and an alpine forest region (Nyang River basin) on the Tibetan Plateau using high-throughput sequencing that targeted the V3-V4 region of 16S rRNA gene. The dominant soil microbial phyla included Proteobacteria, Acidobacteria, and Actinobacteria in the alpine wetland and alpine forest ecosystems, and no significant difference was observed for their microbial composition. Linear discriminant analysis Effect Size (LEfSe) analysis showed that significant enrichment of Hymenobacteraceae and Cytophagales (belonging to Bacteroidetes) existed in the alpine wetland soils, while the alpine forest soils were enriched with Alphaproteobacteria (belonging to Proteobacteria), suggesting that these species could be potential biomarkers for alpine wetland and alpine forest ecosystems. Results of redundancy analysis (RDA) suggest that the microbial community diversity and abundance in the seasonally frozen soils on the Tibetan Plateau were mainly related to the total potassium in the alpine wetland ecosystem, and available potassium and soil moisture in the alpine forest ecosystem, respectively. In addition, function prediction analysis by Tax4Fun revealed the existence of potential functional pathways involved in human diseases in all soil samples. These results provide insights on the structure and function of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau, while the potential risk to human health from the pathogenic microbes in the seasonally frozen soils deserves attention. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2020-12-10 DOI: 10.1016/j.scitotenv.2020.141358 ISSN: 0048-9697

Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010-2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g(-1) to 4.80 mg g(-1), and daily mean spring dust radiative forcing ranged from 50-65Wm(-2), advancing melt by 24-49 days. At GMSP, which received 1.0 mg g(-1) less dust per season on average, spring radiative forcings of 32-50Wm(-2) advanced melt by 15-30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP. Copyright (C) 2015 John Wiley & Sons, Ltd.

期刊论文 2015-12-30 DOI: 10.1002/hyp.10569 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页