Post-grouted shafts (PGDS) and stiffened deep cement mixed (SDCM) shafts reinforce the surrounding soils with cement to enhance the bearing capacity of shaft foundations, and their applications are becoming increasingly widespread. Field tests involving two post-grouted shafts and two stiffened deep cement mixing shafts were conducted at the bridge foundations projects, analyzing the vertical bearing performance of the shafts with cement-stabilized soil enhancement. Additionally, numerical simulations were performed to establish calculation models for single shaft and groups of drilled shafts, PGDS, and SDCM shafts, enabling a comparative analysis of their bearing capacity performance within the identical strata. The results indicate that the post- grouted shaft demonstrated significant bearing deformation capacity, as confirmed by field tests. After grouting, the ultimate bearing capacities of DS1 and DS2 improved by 124.5 % and 110.9 %, respectively. In both single and group modeling shaft foundations, the post-grouted shafts demonstrated the highest bearing deformation characteristics, followed by the identical- size stiffened deep cement mixed shaft, while the long-core SDCM shafts and the ungrouted shafts exhibited the weakest performance. Due to interaction effects among group shafts, the total bearing capacity of the group shafts is not simply the sum of the individual shafts. Specifically, the reduction factor for group shaft capacity ranges from 0.68 to 0.79 at the Baoying Large Bridge site, while at the Yangkou Canal Bridge site, it varies from 0.66 to 0.85. The findings of this study provide valuable insights for practical engineering applications.
This study utilizes a combined approach of Finite Element Method (FEM) simulation and Artificial Neural Network (ANN) modeling to analyze and predict the load-displacement relationship of bored piles in clayey sand. FEM is applied to simulate the nonlinear relationship between load and vertical displacement, with input parameters including load and the mechanical properties of the soil. The results obtained from FEM are used as input data for the ANN model, enabling accurate predictions of vertical displacement based on these parameters. The findings of this study show that the predicted ultimate bearing capacity of the bored piles is highly accurate, with negligible error when compared to field experiments. The ANN model achieved a high level of accuracy, as reflected by an R2 value of 0.9992, demonstrating the feasibility of applying machine learning in pile load analysis. This research provides a novel, efficient, and feasible approach for analyzing and predicting the bearing capacity of bored piles, while also paving the way for the application of machine learning in geotechnical engineering and foundation design. The integration of FEM and ANN not only minimizes errors compared to traditional methods but also significantly reduces time and costs when compared to field experiments.
This paper presents a field pile load test program conducted on four 0.36 m closed-end steel pipe piles with lengths ranging between 11 and 13 m installed in fine-grained soils. Subsurface investigations with standard penetration tests and cone penetration tests with pore pressure measurements were performed at the site. Three pushed-in piezometers at incremental offsets from the piles were also installed to monitor pore water pressure changes during and after the installation of piles. Several dynamic load tests were performed at different times to observe the change in pile resistance. A static load test was also performed on one of the piles. Some load test results showed an unexpected decrease in the resistances of some piles with time. The study showed that construction activities, e.g., installation of other piles, disturbs the soil and groundwater conditions which can significantly affect the pile resistance measured during load tests. This investigation revealed that pile driving and restrikes should be scheduled such that the effect of construction activities on load tests results will be avoided or minimized.
This paper presents an analysis of long, large-diameter bored piles' behavior under static and dynamic load tests for a megaproject located in El Alamein, on the northern shoreline of Egypt. Site investigations depict an abundance of limestone fragments and weak argillaceous limestone interlaid with gravelly, silty sands and silty, gravelly clay layers. These layers are classified as intermediate geomaterials, IGMs, and soil layers. The project consists of high-rise buildings founded on long bored piles of 1200 mm and 800 mm in diameter. Forty-four (44) static and dynamic compression load tests were performed in this study. During the pile testing, it was recognized that the pile load-settlement behavior is very conservative. Settlement did not exceed 1.6% of the pile diameter at twice the design load. This indicates that the available design manual does not provide reasonable parameters for IGM layers. The study was performed to investigate the efficiency of different approaches for determining the design load of bored piles in IGMs. These approaches are statistical, predictions from static pile load tests, numerical, and dynamic wave analysis via a case pile wave analysis program, CAPWAP, a method that calculates friction stresses along the pile shaft. The predicted ultimate capacities range from 5.5 to 10.0 times the pile design capacity. Settlement analysis indicates that the large-diameter pile behaves as a friction pile. The dynamic pile load test results were calibrated relative to the static pile load test. The dynamic load test could be used to validate the pile capacity. Settlement from the dynamic load test has been shown to be about 25% higher than that from the static load test. This can be attributed to the possible development of high pore water pressure in cohesive IGMs. The case study analysis and the parametric study indicate that AASHTO LRFD is conservative in estimating skin friction, tip, and load test resistance factors in IGMs. A new load-settlement response equation for 600 mm to 2000 mm diameter piles and new recommendations for resistance factors phi qp, phi qs, and phi load were proposed to be 0.65, 0.70, and 0.80, respectively.
The warming and melting of permafrost due to climate warming pose a considerable threat to the integrity of the Pan Arctic building, thus jeopardizing sustainable development. The increase in ambient temperature in permafrost areas will cause deterioration in the bearing capacity of building pile foundations. Considering the continuous deepening of the active layer (za), the present paper used small-scale physical modeling to investigate the potential variation of bearing capacity and load transfer mechanism of pile foundations under the scenario of continuous degradation of permafrost. The ultimate bearing capacity of a single pile and the undrained shear strength of the ground under different za are estimated by cone penetration tests. In the static load test of single piles, the axial load-settlement, axial force of pile shaft, and earth pressure at the pile tip are measured. The results show that the rise in ground temperature and the deepening of the za shorten the elastic and elastic-plastic stages of the load-displacement curve, resulting in a gradual decline in the bearing capacity of a single pile. The pile-soil interface temperature is always higher than the adjacent ground temperature at the same depth. Adfreezing force of the pile-soil interface decreases due to the increase in ground temperature and water content. With the deepening of za, the peak point of the shaft resistance decreases from -30 cm to -60 cm under the ultimate state. Meanwhile, with more axial load transfer along the pile shaft to the pile tip, the share ratio of pile tip resistance to ultimate stress gradually increases. In addition, the temperature rise of frozen soil at the pile tip accelerates the settling rate of the pile, which eventually causes the pile foundation failure.