共检索到 581

Uneven displacement of permafrost has become a major concern in cold regions, particularly under repeated freezing-thawing cycles. This issue poses a significant geohazard, jeopardizing the safety of transportation infrastructure. Statistical analyses of thermal penetration suggest that the problem is likely to intensify as water erosion expands, with increasing occurrences of uneven displacement. To tackle the challenges related to mechanical behavior under cyclic loading, the New Geocell Soil System has been implemented to mitigate hydrothermal effects. Assessment results indicate that the New Geocell Soil System is stable and effective, offering advantages in controlling weak zones on connecting slopes and reducing uneven solar radiation. Consequently, the New Geocell Soil System provides valuable insights into the quality of embankments and ensures operational safety by maintaining displacement at an even level below 1.0 mm. The thermal gradient is positive, with displacement below 6 degrees C/m, serving as a framework for understanding the stability of the subgrade. This system also enhances stress and release the sealing phenomenon.

期刊论文 2025-11-01 DOI: 10.1016/j.coldregions.2025.104564 ISSN: 0165-232X

Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.

期刊论文 2025-11-01 DOI: 10.1016/j.cma.2025.118252 ISSN: 0045-7825

Freeze-thaw cycles (FTC) influence soil erodibility (K-r) by altering soil properties. In seasonally frozen regions, the coupling mechanisms between FTC and water erosion obscure the roles of FTC in determining soil erosion resistance. This study combined FTC simulation with water erosion tests to investigate the erosion response mechanisms and key drivers for loess with varying textures. The FTC significantly changed the mechanical and physicochemical characteristics of five loess types (P < 0.05), especially reducing shear strength, cohesion, and internal friction angle, with sandy loam exhibiting more severe deterioration than silt loam. Physicochemical indices showed weaker sensitivity to FTC versus mechanical properties, with coefficients of variation below 5 %. Wuzhong sandy loess retained the highest K-r post-FTC, exceeding that of the others by 1.04 similar to 2.25 times, highlighting the dominant role of texture (21.37 % contribution). Under different initial soil moisture contents (SMC), K-r increased initially and then stabilized with successive FTC, with a threshold effect of FTC on K-r at approximately 10 FTC. Under FTC, the K-r variation rate showed a concave trend with SMC, turning point at 12 % SMC, indicating that SMC regulates freeze-thaw damage. Critical shear stress exhibited an inverse response to FTC compared to K-r, displaying lower sensitivity. The established K-r prediction model achieved high accuracy (R-2 = 0.87, NSE = 0.86), though further validation is required beyond the design conditions. Future research should integrate laboratory and field experiments to expand model applicability. This study lays a theoretical foundation for research on soil erosion dynamics in freeze-thaw-affected areas.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133489 ISSN: 0022-1694

Seasonal freezing and thawing significantly influence the migration and distribution of soil hydrothermal salts. Understanding the dynamics of hydrothermal salt forces in canal foundation soils is crucial for effective canal disease control and optimization. However, the impact on rectangular canals remains poorly understood. Therefore, field-scale studies on water-heat-salt-force-displacement monitoring were conducted for the canal. The study analyzed the changes and interaction mechanisms of water-heat-salt-force in the soil beneath the canal, along with the damage mechanisms and preventive measures. The results indicate that the most rapid changes in temperature, moisture, and salt occur in the subsoil on the canal side, with the greatest depth of freezing. Heat transfer efficiency provides an intuitive explanation for the sensitivity of ground temperature at the junction of the canal wall and subsoil to air temperature fluctuations, as well as the minimal moisture migration in this region under the subcooling effect. The temperature-moisture curve suggests that current waterheat-force and water-heat-salt-force models exhibit a delay in accurately predicting water migration within the subsoil. Rectangular canals are more susceptible to damage under peak freezing conditions, requiring a combined approach of freezing restraint and frost-heaving force to mitigate damage. These findings offer valuable insights for canal design, maintenance, and further research.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133251 ISSN: 0022-1694

Soil chemical washing has the disadvantages of long reaction time, slow reaction rate and unstable effect. Thus, there is an urgent need to find a cost-effective and widely applicable alternative power to facilitate the migration of washing solutions in the soil, so as to achieve efficient removal of heavy metals, reduce the risk of soil compaction, and mitigate the damage of soil structure. Therefore, the study used a combination of freeze-thaw cycle (FTC) and chemical washing to obtain three-dimensional images of soil pore structure using micro-X-ray microtomography, and applied image analysis techniques to study the effects of freeze-thaw washing on the characteristics of different pore structures of the soil, and then revealed the effects of pore structure on the removal of heavy metals. The results showed that the soil pore structure of the freeze-thaw washing treatment (FT) became more porous and complex, which increased the soil imaged porosity (TIP), pore number (TNP), porosity of macropores and irregular pores, permeability, and heavy metal removal rate. Macroporosity, fractal dimension, and TNP were the main factors contributing to the increase in TIP between treatments. The porous structure resulted in larger effective pore diameters, which contain a greater number of branching pathways and pore networks, allowing the chemical washing solutions to fully contact the soil, increasing the roughness of the soil particle surface, mitigating the risk of soil compaction, and decreasing the contamination of heavy metals. The results of this study contribute to provide new insights into the management of heavy metal pollution in agricultural soils.

期刊论文 2025-09-01 DOI: 10.1007/s11270-025-08245-y ISSN: 0049-6979

The present paper sets out a comparative analysis of carbon emission and economic benefit of different performance gradients solid waste based solidification material (SSM). The macro properties of SSM were the focus of systematic study, with the aim of gaining deeper insight into the response of the SSM to conditions such as freeze-thaw cycles, seawater erosion, dry-wet cycles and dry shrinkage. In order to facilitate this study, a range of analytical techniques were employed, including scanning electron microscopy (SEM), X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP). The findings indicate that, in comparison with cement, the carbon emissions of SSM (A1) are diminished by 77.7 %, amounting to 190 kg/t, the carbon-performance ratio (24.4 kg/ MPa), the cost-performance ratio (32.1RMB/MPa) and the carbon-cost ratio (0.76kg/RMB) are reduced by 86 %, 56 % and 68 % respectively. SSM demonstrated better performance in terms of freeze-thaw resistance, seawater erosion resistance and dry-wet resistance when compared to cement. The dry shrinkage value of SSM solidified soil was reduced by approximately 35 % at 40 days compared to cement solidified soil, due to compensatory shrinkage and a reduction in pores. In contrast to the relatively minor impact of seawater erosion and the moderate effects of the wet-dry cycle, freeze-thaw cycles have been shown to cause the most severe structural damage to the micro-structure of solidified soil. The conduction of durability tests resulted in increased porosity and the most probable aperture. The increase in pores and micro-structure leads to the attenuation of macroscopic mechanical properties of SSM solidified soil. The engineering application verified that with the content of SSM of 50 kg/m, 4.5 % and 3 %, the strength, bearing capacity and bending value of SSM modified soil were 1.9 MPa, 180 kPa and 158, respectively in deep mixing piles, shallow in-situ solidification, and roadbed modified soil field.

期刊论文 2025-09-01 DOI: 10.1016/j.mtsust.2025.101135 ISSN: 2589-2347

Small modular reactors (SMRs) are an alternative for clean energy solutions in Canada's remote northern communities, owing to their safety, flexibility, and reduced capital requirements. Currently, these communities are heavily reliant on fossil fuels, and the transition to cleaner energy sources, such as SMRs, becomes imperative for Canada to achieve its ambitious net-zero emissions target by 2050. However, applying SMR technology in permafrost regions affected by climate change presents unique challenges. The degradation of permafrost can lead to significant deformations and settlements, which can result in increased maintenance expenses and reduced structural resilience of SMR infrastructure. In this paper, we studied the combined effect of climate nonstationarity in terms of ground surface temperature and heat dissipation from SMR reactor cores for the first time in two distinct locations in Canada's North: Salluit in Quebec and Inuvik in the Northwest Territories. It was shown that these combined effects can make significant changes to the ground thermal conditions within a radius of 15-20 m around the reactor core. The change in the ground thermal conditions poses a threat to the integrity of the permafrost table. The implementation of mitigation strategies is imperative to maintain the structural integrity of the nuclear infrastructure in permafrost regions. The thermal modeling presented in this study paves the way for the development of advanced coupled thermo-hydromechanical models to examine the impact of SMRs and climate nonstationarity on permafrost degradation.

期刊论文 2025-09-01 DOI: 10.1061/JCRGEI.CRENG-804 ISSN: 0887-381X

In this paper, through extensive on-site research of the plain concrete composite foundation for the Jiuma Expressway, the study conducted proportional scaling tests. This study focused on the temperature, moisture, pile-soil stress, and deformation of this foundation under freeze-thaw conditions. The findings indicate that the temperature of the plain concrete pile composite foundation fluctuates sinusoidally with atmospheric temperature changes. As the depth increases, both temperature and lag time increase, while the fluctuation range decreases. Furthermore, the effect of atmospheric temperature on the shoulder and slope foot is more significant than on the interior of the road. During the freeze-thaw cycle, the water content and pore-water pressure in the foundation fluctuate periodically. The pile-soil stress fluctuates periodically with the freeze-thaw cycle, with the shoulder position exhibiting the most significant changes. Finally, the road displays pronounced freeze-thaw deformations at the side ditch and slope toe. This study provides a valuable basis for the construction of highway projects in cold regions.

期刊论文 2025-08-01 DOI: 10.1061/IJGNAI.GMENG-10352 ISSN: 1532-3641

High-strength mortar (HSM) gradually has wide applications due to its exceptional strength, micro-expansion properties, and excellent fluidity. Behavior deterioration of structures in saline soil areas is primarily attributed to freeze-thaw cycles and sulfate attack. In this study, the coupling effect of freeze-thaw cycles and sulfate attack on the appearance, mass loss, and relative dynamic elastic modulus of HSM was investigated during erosion. Then, compressive experiments were conducted to assess the mechanical properties of HSM subjected to both freeze-thaw cycles and sulfate attack. The influences of coupling freeze-thaw cycles and sulfate attack on the compressive properties of HSM were quantified through regression analysis of experimental results. Empirical models for compressive stress-strain curves and damage constitutive behavior of HSM were developed, taking the coupled adverse effect into account. The results indicate that the coupled effect of freeze-thaw cycles and sulfate attack causes performance deterioration of HSM. The empirical models reproduce the compressive behaviors of HSM subjected to freeze-thaw cycles and sulfate attack.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112788

Volume changes in soil caused by freeze-thaw cycles can affect the shear performance of the saline soil-geotextile interface. To investigate this issue, the study examined changes in shear strength, deformation characteristics, and failure modes of the saline soil-geotextile interface under different numbers of freeze-thaw cycles. The experimental results indicate that with the increase in freeze-thaw cycles, the shear stiffness of the interface initially increases and then decreases, demonstrating the reduction in elasticity and resistance to deformation caused by freeze-thaw cycles. And the enhancement of normal stress can effectively increase the density of the soil and the adhesion at the interface, thereby improving shear stiffness. Meanwhile, the salt content in the soil also significantly impacts the mechanical properties, with notable changes in the dynamic characteristics of the interface as the salt content varies. Furthermore, after freeze-thaw actions, the soil becomes loose, reduces in integrity, features uneven surfaces, and sees increased internal porosity leading to slip surfaces. Trend analysis from this study provides new insights into the failure mechanisms at the saline soil-geotextile interface.

期刊论文 2025-08-01 DOI: 10.1016/j.geotexmem.2025.03.001 ISSN: 0266-1144
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共581条,59页