共检索到 902

Aerosols over the Tibetan Plateau (TP) strongly influence regional climate and hydrological cycles. Here we investigate the size-resolved microphysical and optical properties of aerosols in an urban area of the northern TP using a tandem system of a differential mobility analyzer, a condensation particle counter, and a single particle soot photometer. Under the 2021 summer conditions, the average particle number size distribution follows a lognormal pattern, peaking at similar to 70 nm. Refractory black carbon (rBC) aerosols constitute 17.7% of the total particle population in the 100-750 nm mobility diameter (D-mob) range, with their proportion rising to over 50% for D-mob > 500 nm. Most rBC particles are externally mixed, while only 12.2% are thickly coated with non-refractory materials. Externally mixed rBC particles show strong non-sphericity, with a dynamic shape factor increasing from 1.8 at 115 nm to 2.8 at 750 nm, consistent with aggregate structures. In contrast, thickly coated rBC particles are nearly spherical, with coating thickness increasing with size. The total rBC mass estimated from size-resolved measurements closely matches bulk rBC mass directly measured. rBC-free particles exhibit slight non-sphericity, with shape factor positively correlated with refractive index, likely due to dust contributions. Bulk scattering coefficients derived from size-resolved data match those estimated under the well-mixed spherical assumption. However, the later scheme-lacking observational constraints on morphology and mixing state-overestimates absorption by over a factor of three, thereby underestimating the single-scattering albedo. These results provide key constraints for improving aerosol radiative forcing estimates and advancing understanding of aerosol-climate interactions over the TP.

期刊论文 2026-01-17 DOI: 10.1029/2025JD045260 ISSN: 2169-897X

Light-absorbing carbonaceous aerosols, comprising black carbon (BC) and brown carbon (BrC), significantly influence air quality and radiative forcing. Unlike traditional approaches that use a fixed value of absorption & Aring;ngstrom exponent (AAE), this study investigated the absorption and optical properties of carbonaceous aerosols in Beijing for both local emission and regional transport events during a wintertime pollution event by using improved AAE results that employs wavelength-dependent AAE (WDA). By calculating the difference of BC AAE at different wavelengths using Mie theory and comparing the calculated results to actual measurements from an Aethalometer (AE31), a more accurate absorption coefficient of BrC can be derived. Through the analysis of air mass sources, local emission was found dominated the pollution events during this study, accounting for 81 % of all cases, while regional transport played a minor role. Carbonaceous aerosols exhibited a continuous increasing trend during midday, which may be attributed to the re-entrainment of nighttime-accumulated carbonaceous aerosols to the surface during the early planetary boundary layer (PBL) development phase, as the mixed layer rises, combined with the variation of PBL and anthropogenic activity. At night, variations in the PBL height, in addition to anthropogenic activities, effectively contributed to surface aerosol concentrations, leading to peak surface aerosol values during local pollution episodes. The diurnal variation of AAE470/880 exhibited a decreasing trend, with a total decrease of approximately 12 %. Furthermore, the BrC fraction showed a constant diurnal variation, suggesting that the declining AAE470/880 was primarily influenced by BC, possibly due to enhanced traffic contributions.

期刊论文 2026-01-01 DOI: 10.1016/j.atmosenv.2025.121616 ISSN: 1352-2310

The long-term trend for aerosol optical properties and climate impact sensitivity in terms of radiative forcing efficiency were analyzed at a suburban station in Athens, Southeast Mediterranean, using an extensive dataset from 2008 to 2022. The study examined scattering (nsc) and absorption (nap) coefficients, scattering & Aring;ngstrom exponent (SAE), absorption & Aring;ngstrom exponent (AAE), single scattering albedo (SSA), asymmetry parameter (g), and radiative forcing efficiency (RFE). Seasonal variability was linked to meteorological conditions and human activities. Single Scattering Albedo (SSA) was lowest (0.86), and Radiative Forcing Efficiency (RFE) was highest (-61 W/m2) in winter, confirming enhanced contributions from traffic and biomass burning. Lower SAE values (1.5) in spring indicate a greater presence of coarse particles due to frequent Saharan dust events (SDEs). Daily patterns of nap and SSA reflect local emissions, with pronounced traffic-related peaks. Aerosol classification revealed that Black Carbon (BC) dominates the suburban aerosol (51 %), with mixed BrC-BC (16 %) peaking in winter and dust-pollution mixtures (13 %) increasing in spring. The presence of large particles mixed with BC (11 %) was more frequent in spring, further highlighting seasonal variability. Trend analysis showed statistically significant (ss) decreases in nsc (-0.611) and SSA (-0.003), alongside increases in nap (+0.027) and RFE (+0.270) at a 95 % confidence level, suggesting a shift toward more absorbing aerosols. The findings provide new insights and reveal a new aerosol regime, where a reduction in anthropogenic emissions is affecting the scattering rather than the absorbing aerosol component, while the impact from forest fires as a climate feedback mechanism has a significant effect in the Eastern Mediterranean. It is important for future studies and climate modelling to account for the regionally observed changes of the state of mixing of ambient aerosol leading to a shift in radiative forcing efficiency through the reduction in SSA. This is evident in the long term for the east Mediterranean region and must be accounted for in radiative forcing estimates and future climate projections.

期刊论文 2026-01-01 DOI: 10.1016/j.atmosenv.2025.121633 ISSN: 1352-2310

Conventional materials necessitate a layer-by-layer rolling or tamping process for subgrade backfill projects, which hampers their utility in confined spaces and environments where compaction is challenging. To address this issue, a self-compacting poured solidified mucky soil was prepared. To assess the suitability of this innovative material for subgrade, a suite of performance including flowability, bleeding rate, setting time, unconfined compressive strength (UCS), and deformation modulus were employed as evaluation criteria. The workability and mechanical properties of poured solidified mucky soil were compared. The durability and solidification mechanism were investigated. The results demonstrate that the 28-day UCS of poured solidified mucky soil with 20% curing agent content reaches 2.54 MPa. The increase of organic matter content is not conducive to the solidification process. When the curing temperature is 20 degrees C, the 28-day UCS of the poured solidified mucky soil with curing agent content not less than 12% is greater than 0.8 MPa. The three-dimensional network structure formed with calcium silicate hydrate, calcium aluminate hydrate, and ettringite is the main source of strength formation. The recommended mud moisture content is not exceed 85%, the curing agent content is 16%, and the curing temperature should not be lower than 20 degrees C.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2508345 ISSN: 1029-8436

Brown carbon (BrC) aerosols play a significant role in atmospheric radiative forcing, particularly in the Arctic where they could potentially contribute to surface warming. However, their regional variability and sources in the open ocean remain poorly understood. To address this, we conducted ship-based aerosol measurements aboard the R/V Mirai during the MR18-05C research cruise (October-December 2018), spanning the western North Pacific, Bering Sea, and Arctic Ocean. We examined BrC optical properties alongside PM2.5 chemical composition, trace gases, and meteorological conditions to assess its variability and sources. Our results reveal a drastic northward decline in BrC levels, with light absorption capability in the Bering Sea and the Arctic approximately 50% lower than those in the western North Pacific. The strongest BrC absorption was observed in regions influenced by crop residue burning in Northeast China. In the Arctic, BrC remained low as the main footprint is within the Arctic alongside limited BrC sources, although occasionally affected by long-range transport. Chemical composition analysis highlights biomass burning and fossil fuel emissions as dominant BrC sources in the western North Pacific. Solubility analysis indicated that BrC in the Arctic was predominantly water soluble, increasing its susceptibility to wet scavenging. A strong high-pressure system (1027 +/- 6.2 hPa) over the Arctic (November 9-17) led to aerosol accumulation, although BrC remained low. This study underscores the complex interplay between regional emissions, long-range transport, and atmospheric processing in regulating BrC distributions across latitudinal gradients. Our findings highlight the importance of source-region emissions and transport pathways in determining BrC fate in the Arctic, with implications for understanding its role in climate forcing.

期刊论文 2025-12-11 DOI: 10.1186/s40645-025-00785-5 ISSN: 2197-4284

Deep-rooted maize plants utilize water and nutrients more effectively, particularly in compacted soil. However, the mechanisms by which different maize genotypes adjust root angles in response to compaction remain underexplored. We conducted a two-year study (2021-2022) on silty loam soils in the North China Plain. We tested two genotypes of maize [one with naturally deep roots (DR) and another with shallow roots (SR)] in compacted (C) and non-compacted (NC) soil. Soil compaction impeded shoot growth in both genotypes; however, DR exhibited better growth than SR. Under compacted conditions, DR maintained steeper root angles and demonstrated superior mechanical strength with larger root cortex areas (increased by 60 %) and stele (increased by 92 %), as well as higher cellulose concentration (up to 146 %). Notably, PIEZO1 gene expression increased significantly (up to 242 %) in DR under compaction, suggesting its role in root structural enhancement, unlike in SR where it remained unchanged. These findings underscore the importance of genetic, anatomical, and biochemical adaptations in maize roots, facilitating their resilience to soil compaction. Such insights could inform the breeding of maize genotypes that are better adapted to diverse soil conditions, potentially boosting agricultural productivity.

期刊论文 2025-10-01 DOI: 10.1016/j.still.2025.106620 ISSN: 0167-1987

A comprehensive series of tests, including dynamic triaxial, monotonic triaxial and unconfined compressive strength (UCS) tests, were carried out on reconstituted landfill waste material buried for over twenty years in a closed landfill site in Sydney, Australia. Waste materials collected from the landfill site were treated with varying percentages of cement, and both treated and untreated specimens were investigated to evaluate the influence of cement treatment. The study examined the dynamic properties of cement-treated landfill waste, including cumulative plastic deformation, resilient modulus, and damping ratio, and also analysed the impact of cyclic loading on post-cyclic shear strength in comparison to pre-cyclic shear strength. The UCS tests and monotonic triaxial tests demonstrated that untreated specimens subjected to monotonic loading exhibited a progressive increase in strength with rising axial strain, whereas cement-treated specimens reached a peak strength before experiencing a decline. During cyclic loading, with the inclusion of cement, a significant reduction in cumulative plastic deformation and damping ratio was observed, and this reduction was further enhanced with increasing cement content. Conversely, the resilient modulus showed substantial improvement with the addition of cement, and this enhancement was further amplified with increasing cement content. The formation of cementation bonds between particles curtails particle movement within the landfill waste material matrix and prevents interparticle sliding during cyclic loading, leading to lower plastic strains and damping ratio while increasing resilient modulus. Post-cyclic monotonic testing revealed that cyclic loading caused the partial breakage of the cementation bonds, resulting in reduced shear strength. This reduction was higher on samples treated with lower cement content. Overall, the findings of the research offer crucial insights into the possibility of cement-treated landfill waste as a railway subgrade, laying the groundwork for informed design decisions in developing transport infrastructure over closed landfill sites while using landfill waste materials available on site.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109525 ISSN: 0267-7261

The incorporation of PCMs in energy piles holds significant potential for revolutionising thermal management in construction, making them a crucial component in the development of next-generation systems. The existing literature on PCM-integrated energy piles largely consists of isolated case studies and experimental investigations, often focusing on specific aspects without providing a comprehensive synthesis to guide future research or practical applications. To date, no review has been conducted to consolidate and evaluate the existing knowledge on PCMs in energy piles, making this review the first of its kind in this field. Up until now, this gap in research has limited our understanding of how PCM configurations, thermal properties, and integration methods impact the thermal and mechanical performance of these systems. Through thoroughly analysing the current research landscape, this review discovers key trends, methodologies, and insights. The methodology used here involved a systematic search of the existing SCI/SCIE-indexed literature to ensure a structured review. Based on the SLR findings, it is evident that current research on PCMs in energy piles is focused on improving thermal efficiency, heat transfer, and compressive strength. Furthermore, precise adjustments in melting temperature significantly impact efficiency, with PCM integration boosting thermal energy extraction by up to 70 % in some cases, such as heating cycles, and saving up to 30 % in operational costs. PCMs also reduce soil temperature fluctuations, improving structural integrity through minimising axial load forces. However, challenges remain, including reduced mechanical strength due to voids and weak bonding, high costs, and complexities such as micro-encapsulation. We acknowledge that there are gaps in addressing certain key factors, including thermal diffusivity; volume change during phase transitions; thermal response time; compatibility with construction materials; interaction with soil, creep, and fatigue; material compatibility and durability; and the long-term energy savings associated with PCM-GEP systems.

期刊论文 2025-09-01 DOI: 10.1016/j.applthermaleng.2025.126630 ISSN: 1359-4311

Iron pipes connected by bell-spigot joints are utilized in buried pipeline systems for urban water and gas supply networks. The joints are the weak points of buried iron pipelines, which are particularly vulnerable to damage from excessive axial opening during seismic motion. The axial joint opening, resulting from the relative soil displacement surrounding the pipeline, is an important indicator for the seismic response of buried iron pipelines. The spatial variability of soil properties has a significant influence on the seismic response of the site soil, which subsequently affects the seismic response of the buried iron pipeline. In this study, two-dimensional finite element models of a generic site with explicit consideration of random soil properties and random mechanical properties of pipeline joints were established to investigate the seismic response of the site soil and the buried pipeline, respectively. The numerical results show that with consideration of the spatial variability of soil properties, the maximum axial opening of pipeline joints increases by at least 61.7 %, compared to the deterministic case. Moreover, in the case considering the variability of pipeline-soil interactions and joint resistance, the spatial variability of soil properties remains the dominant factor influencing the seismic response of buried iron pipelines.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107347 ISSN: 0266-352X

The hydraulic effect of plant roots reduces precipitation infiltration and enhances shallow slope stability. However, after root death and decay, soil permeability increases while water-retention capacity decreases. The time-varying mechanisms governing the hydraulic properties of root-soil composites after root decay remain unclear. This study examines the evolution of soil pore structure following root decay. A time-varying soil water retention curve (SWRC) model was developed to characterize changes in water-retention capacity. Additionally, a time-varying saturated infiltration coefficient model and a permeability coefficient prediction model were established to describe variations in hydraulic properties. A one-dimensional soil column infiltration test was conducted on root-soil composites at different stages of root decay to investigate the time-dependent changes in hydraulic properties. The reliability of the proposed models was validated using experimental results. The findings indicate the following: After root death, root biomass, diameter, length, and number decreased with increasing decay time, stabilizing after four months. Root decay led to a reduction in root volume ratio, which altered soil structure and enhanced the permeability of root-soil composites. Longer decay periods increased soil porosity, modifying the soil water characteristic curve and reducing water-retention capacity. Creeping roots decayed more significantly than fibrous roots due to their distinct morphological traits, making changes in hydraulic properties more pronounced in the topsoil. Therefore, plant root decay negatively affects soil hydraulic properties by continuously altering soil pore structure. These findings provide a crucial foundation for understanding the time-dependent mechanisms of hydraulic property variations in root-soil composites during plant root decay.

期刊论文 2025-09-01 DOI: 10.1016/j.jhydrol.2025.133192 ISSN: 0022-1694
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共902条,91页