共检索到 7

Winter extreme low temperature events have been occurring frequently both before and after the winter season. The freezing resistance temperature of wheat is far lower than the intensity of low temperatures during the mid-winter period. Therefore, it is necessary to further quantify and evaluate the impact of low-temperature periods and durations during the early winter and the green-up period on the freezing resistance of wheat, based on different evaluation indicators. Through conducting experiments in an artificial low-temperature control chamber, this study investigates the critical temperature thresholds for the impact of different low-temperature periods and durations on the tiller and yield of winter wheat, as well as the critical temperature thresholds for soil effective negative accumulated temperature. The results demonstrate that (1) the tiller mortality rate (RT) and yield reduction rate (RY) of winter wheat during the winter increase with the severity and duration of low temperatures, showing an S-shaped curve. The winter wheat mortality rate during the early winter is related to the soil effective negative accumulated temperature in an exponential function, while the mid-winter and green-up stages have a linear relationship. (2) The freezing threshold temperatures for the RT, RY and soil negative accumulated temperature (SENAT) in different low-temperature periods (early winter, mid-winter, and green-up periods) range from - 11.7 to -17.9 degrees C, -9.4 to -15.6 degrees C, and 15.9 to 131.7 degrees Ch (2.2 to 16.8 degrees Cd), respectively. (3) The freezing threshold temperatures for the RT and RY in different low-temperature durations (1 day, 2 days, and 3 days) range from - 2.8 to -17.9 degrees C and - 9.4 to -15.6 degrees C, respectively. The findings of this study provide technical support and scientific guidance for the global cultivation structure and variety layout of winter wheat under the background of climate warming, as well as for the prevention and reduction of freezing damage and yield losses.

期刊论文 2025-03-12 DOI: 10.1038/s41598-025-93019-z ISSN: 2045-2322

Agricultural drought significantly affects crop growth and food production, making accurate drought thresholds essential for effective monitoring and discrimination. This study aims to monitor the threshold ranges for different drought levels of winter wheat during three growth periods using a multispectral Unmanned Aerial Vehicle (UAV). Firstly, based on controlled field experiments, six vegetation indices were used to develop UAV optimal inversion models for the Leaf Area Index (LAI) and Soil-Plant Analysis Development (SPAD) during the jointing-heading period, heading-filling period, and filling-maturity period of winter wheat. The results show that during the three growth periods, the DVI-LAI, NDVI-LAI, and RVI-LAI models, along with the DVI-SPAD, RVI-SPAD, and TCARI-SPAD models, achieved the highest inversion accuracy. Based on the UAV-inversed LAI and SPAD indices, threshold ranges for different drought levels were determined for each period. The accuracy of LAI threshold monitoring during three periods was 92.8%, 93.6%, and 90.5%, respectively, with an overall accuracy of 92.4%. For the SPAD index, the threshold monitoring accuracy during three periods was 93.1%, 93.0%, and 92%, respectively, with an overall accuracy of 92.7%. Finally, combined with yield data, this study explores UAV-based drought disaster monitoring for winter wheat. This research enriches and expands the crop drought monitoring system using a multispectral UAV. The proposed drought threshold ranges can enhance the scientific and precise monitoring of crop drought, which is highly significant for agricultural management.

期刊论文 2025-02-20 DOI: 10.3390/drones9030157

The implementation of real-time dynamic monitoring of disaster formation and severity is essential for the timely adoption of disaster prevention and mitigation measures, which in turn minimizes disaster-related losses and safeguards agricultural production safety. This study establishes a low-temperature disaster (LTD) monitoring system based on machine learning algorithms, which primarily consists of a module for identifying types of disasters and a module for simulating the evolution of LTDs. This study firstly employed the KNN model combined with a piecewise function to determine the daily dynamic minimum critical temperature for low-temperature stress (LTS) experienced by winter wheat in the Huang-Huai-Hai (HHH) region after regreening, with the fitting model's R2, RMSE, MAE, NRMSE, and MBE values being 0.95, 0.79, 0.53, 0.13, and 1.716 x 10-11, respectively. This model serves as the foundation for determining the process by which winter wheat is subjected to LTS. Subsequently, using the XGBoost algorithm to analyze the differences between spring frost and cold damage patterns, a model for identifying types of spring LTDs was developed. The validation accuracy of the model reached 86.67%. In the development of the module simulating the evolution of LTDs, the XGBoost algorithm was initially employed to construct the Low-Temperature Disaster Index (LTDI), facilitating the daily identification of LTD occurrences. Subsequently, the Low-Temperature Disaster Process Accumulation Index (LDPI) is utilized to quantify the severity of the disaster. Validation results indicate that 79.81% of the test set samples exhibit a severity level consistent with historical records. An analysis of the environmental stress-mitigation mechanisms of LTDs reveals that cooling induced by cold air passage and ground radiation are the primary stress mechanisms in the formation of LTDs. In contrast, the release of latent heat from water vapor upon cooling and the transfer of sensible heat from soil moisture serve as the principal mitigation mechanisms. In summary, the developed monitoring framework for LTDs, based on environmental patterns of LTD formation, demonstrates strong generalization capabilities in the HHH region, enabling daily dynamic assessments of the evolution and severity of LTDs.

期刊论文 2025-02-01 DOI: 10.3390/agronomy15020337

Winter wheat (Triticum aestivum L.) is a crucial crop that guarantees food supply in the North China Plain (NCP). As the frequency of extreme cold events increases, it is necessary to explore the freezing resistance of different wheat varieties in order to clarify planting boundaries and help with risk assessment. In this study, 2-year controlled experiments were conducted to explore the effect of freezing temperatures (T air) and freezing durations on three winterness types. A set of indexes were used to characterize the subfreezing stress on wheat tiller, leaf, and final yield. Logistical regressions were used to quantify the temperature threshold for 10%, 30%, and 50% of freezing injury. The results showed that the lower temperature threshold of tiller (LT) varied from -9.6 to -15.9 degrees C, -10.7 to -19.1 degrees C and -11.4 to -21.2 degrees C for LT10, LT30, and LT50, respectively. The difference between LT and yield loss (YL) indexes reduced with decreased winterness types and was -0.1 to 3.4 degrees C, -0.7 to 2.1 degrees C, and 0.3 to 0.9 degrees C higher compared with YL thresholds for winterness, semi-winterness, and weak-winterness types, respectively. The average minimum soil temperature was 7.5, 4.8, and 4.2 degrees C higher than T-air for 1-, 2-, and 3-day treatment, respectively. Soil effective negative accumulated temperature hours (TSEh) ranged from 6.9 to 12.0, 48.4 to 6.9, and 84.7 to 106.9 degrees Ch for 10%, 30%, and 50% tiller mortality, respectively. Freezing treatment with T-air < -12, -9, and -8 degrees C obviously decreased leaf Fv/Fm for the three varieties and Fv/Fm declined obviously after 5 days of recovery under field conditions. Our results provided multiple indexes for quantifying subfreezing damage in practical wheat production and could shed light on future risk assessment.

期刊论文 2024-10-17 DOI: 10.3389/fpls.2024.1419381 ISSN: 1664-462X

AimsOpencast lignite mining causes significant disturbances to the natural environment. It isn't only the plant cover that is destroyed, also the soil cover is damaged. Soils are replaced by dumps with material composition that properties differ significantly from natural soils. Reclamation of these areas is necessary.MethodsThis study presents the effect of forty-three years of agricultural reclamation involving alternating winter wheat and winter rapeseed in three fertilization treatments: 0- (without fertilization), I-NPK and II-NPK on the chemical properties of Technosols.ResultsThe investigation demonstrated that the Ap-horizon emerged in the case of I-NPK and II-NPK treatments. There was an improvement in chemical properties for the Ap-horizon as compared to 1978: soil organic carbon (SOC), total nitrogen (TN), available phosphorus (P) and potassium (K) increased. The CaCO3 decreased, and SOC/TN ratio declined, while pH and cation exchange capacity (CEC) remained unchanged. For the Technosols' surface horizon of the 0-NPK, there were also temporal increases in TN and SOC with a decrease in the SOC/TN ratio, whereas P, K, pH, CEC and CaCO3 values did not change significantly.ConclusionIn the 43-year-old post-mining Technosols, under the effect of fertilization and cultivated plants, the Ap horizon has formed, while in the non-fertilized soil the AC and CA horizons. Soil that were fertilized had significantly higher SOC, TN, P and K values in the surface horizon than minesoils without fertilization. In the subsurface horizons, the properties of minesoils were similar regardless of fertilization.

期刊论文 2024-10-03 DOI: 10.1007/s11104-024-06983-2 ISSN: 0032-079X

Drought is a major natural disaster worldwide. Understanding the correlation between meteorological drought (MD) and agricultural drought (AD) is essential for relevant policymaking. In this paper, standardized precipi-tation evapotranspiration index and standardized soil moisture index were used to estimate the MD and AD in the North China Plain (NCP) to identify the correlation between MD and AD during the growth period of winter wheat. In addition, we investigated the contributions of climate change (CC) and human activity (HA) to AD and the factors influencing the loss of winter wheat net primary production (NPP). Drought propagation time (PT) increased spatially from the southern to northern NCP (from 3 to 11 months). PT first increased and then decreased during the phenological period of winter wheat, and the decreasing trend was delayed with an increasing latitude. In general, the relative contribution of CC to AD was higher than that of HA; the correlation between MD and AD exhibited a weakening trend, particularly during the middle and late phenological stages of winter wheat. Precipitation was the main driver of the effects of HA on AD; the effects were stronger in areas with less precipitation. However, because of the improved irrigation conditions and scarce rainfall during the growth period of winter wheat in the study area, the effects of precipitation on AD were nonsignificant. Instead, tem-perature, wind, and total solar radiation, which are highly correlated with evapotranspiration, were identified as the primary drivers of AD; spatiotemporal variations were noted in these correlations. Prolonged drought PT reduced NPP; the sensitivity of winter wheat NPP to AD was higher in humid areas than in semiarid or semi-humid areas. NPP loss occurred primarily due to HA. Our findings revealed a correlation between MD and AD in agroecosystems and may facilitate policymaking related to drought mitigation and food security.

期刊论文 2023-05-01 DOI: 10.1016/j.jhydrol.2023.129504 ISSN: 0022-1694

Autumn-sown field crops have important agronomic advantages (e.g., reduction of soil erosion and nutrient leaching, maximizing the use of spring moisture) and have the potential to be highly productive even though adverse winter conditions can negatively affect crop viability and yield. In the face of the unpredictable weather patterns and the expected shifts in climate in the near future, there is an imperative to develop methods to quantify both the risk of winter damage and how it is affected by altered climatic conditions and crop variety. We propose a set of indices to characterize synthetically the risk of crop damage stemming from cold spells, extended periods at low temperature, frequent occurrence of freeze-thaw cycles, and prolonged snow cover. An existing model of crop hardening and dehardening is further developed to account in full for the variability of lethal threshold temperature among individual plants. This model is coupled to a simple yet realistic description of crop-sensed temperature, so that required inputs are limited to crop-specific responses to low temperature and standard meteorogical data (average daily temperature and snow depth). This framework is applied to winter wheat under the current climatic conditions for central and southern Sweden. The roles of variety-specific hardening ability, temperature, and snow are assessed separately, thus obtaining indications of the potential impacts of variety selection and future predicted changes in temperature and snow cover in the region. Variety-specific hardening ability and response to exposure to low temperature may drastically alter the extent of winter damage. The most prevalent damaging mechanism depends on the climatic regime, with crops in colder areas benefiting from extended snow cover. A tradeoff between temperature (and hence latitude) and snow emerges, with locations at intermediate latitudes subjected to the highest risk of crop damage from exposure to low temperature and frequent freeze-thaw cycles. The same locations are also characterized by the highest inter-annual variability in the extent of winter damage - a fact that has potential implications for yield reliability. (C) 2014 Elsevier B.V. All rights reserved.

期刊论文 2014-10-15 DOI: 10.1016/j.agrformet.2014.06.003 ISSN: 0168-1923
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页