Pre- and post-landslide phenomena in Pernote area, Ramban District, Jammu and Kashmir, India: implications for early warning, mitigation, and preparedness

Landslide Debris flow Hazards Damage Pernote Himalaya
["Mir, Riyaz Ahmad","Aziz, Kainat","Singh, Sachchidanand","Sharma, Ishan","Shah, Zameer Ahmad","Ahmed, Rayees"] 2025-05-01 期刊论文
(5)
The Pernote landslide event in the Ramban area on April 25, 2024, caused significant damage and displaced many residents. Preliminary investigations identified the landslide as a massive, complex debris slide and flow, primarily involving overburden materials such as mud, silt, clay, and rock fragments. The slide was characterized by several rotational slip planes and debris flow channels. The severity of the event was attributed to explicit geological conditions, including fault and thrust zones, loose consolidated and deformed rocks from the Murree Formation, and thick deposits of Quaternary sediments exceeding similar to 20 m. Heavy antecedent rainfall (100-175 mm) from April 20th to 24th saturated the debris and soil cover, triggering the landslide on the steep slopes (angle > 45 degrees). The total displacement was approximately 40 m, with a depth of about similar to 12 m. The slide zone extended from the crown to the toe, reaching up to the River Chenab, covering approximately 1250 m. The Pernote landslide was not entirely unexpected, as early signs of movement-such as deep fissures, ground cracks, and bulges-were observed as early as 2021. Temporal analysis of high-resolution Google Earth images from 2012 to 2022 supports these observations, revealing signs like old landslide scars, ground cracks, and ongoing landslide activity. Additionally, during the past decade, significant changes in vegetation cover and a 19.2% increase in built-up areas were noted. These findings highlight the importance of monitoring early surface indications as warning signs for effective landslide mitigation, preparedness, and public awareness to prevent loss of life and infrastructure in future events.
来源平台:LANDSLIDES