Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.
The existence of rock weathering products has an important effect on the infiltration of water in the soil. Understanding the mechanism of water infiltration in a mixed soil and weathered rock debris medium is highly important for soil science and hydrology. The purpose of this study is to explore the effects of mudstone hydrolysis on water infiltration in the soil under different mixing ratios (0-70 %) of weathered mudstone contents. Soil column experiments and numerical modelling were used to study the processes of hydrolysis of weathered mudstone and water infiltration in the mixed medium. The results revealed that water immersion can cause the dense mudstone surface to fall off, thus forming pores, and that the amount of these pores first increase but then decrease over time. The disintegration of post-hydrolysis mudstone debris occurs mainly among particles ranging from 2-2000 mu m, predominantly transforming sand particles into finer fractions. Increasing the mudstone content in the soil from 0 % to 50 % enhances the infiltration rate and cumulative infiltration volume. However, when the mudstone content exceeds 50 %, these parameters decrease. The mudstone weathering products promote water infiltration in the soil within a certain range of mudstone contents, but as the ratio of weathered products increases, excessive amounts of mudstone hinder the movement of water in the soil. The identified transformation phenomenon suggests that the infiltration capacity of mixed soil will not scale linearly with mudstone content. The findings enable some mitigation strategies of geologic hazards based on the hydrological stability in heterogeneous environments.
This study investigates the microhardness and geometric degradation mechanisms of interfacial transition zones (ITZs) in recycled aggregate concrete (RAC) exposed to saline soil attack, focusing on the influence of supplementary cementitious materials (SCMs). Ten RAC mixtures incorporating fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and metakaolin (MK) at 10 %, 15 %, and 20 % replacement ratios were subjected to 180 dry-wet cycles in a 7.5 %MgSO4-7.5 %Na2SO4-5 %NaCl solution. Key results reveal that ITZ's microhardness and geometric degradation decreases with exposure depth but intensifies with prolonged dry-wet cycles. The FAGBFS synergistically enhances ITZ microhardness while minimizing geometric deterioration, with ITZ's width and porosity reduced to 67.6-69.0 mu m and 25.83 %, respectively. In contrast, FA-SF and FA-MK exacerbate microhardness degradation, increasing porosity and amplifying microcrack coalescence. FA-GBFS mitigates the diffusion-leaching of aggressive/original ions and suppresses the formation of corrosion products, thereby inhibiting the initiation and propagation of microcracks. In contrast, FA-SF and FA-MK promote the formation of ettringite/gypsum and crystallization bloedite/glauberite, which facilitates the formation of trunk-limb-twig cracks.
Biological soil crusts (BSCs; biocrusts) are well developed in drylands, which are crucial to the stability and resilience of dryland ecosystems. In the southeastern Gurbantunggut Desert, a typical sandy desert in the middle part of central Asia, engineering development has an increasing negative impact on ecosystems. Fortunately, ecological restoration measures are being implemented, but the exact effect on soil quality is still unclear. In artificial sand-fixing sites on reshaped dunes along the west-east desert road, a total of 80 quadrats (1 m x 1 m) of reed checkerboards after the implementation of sand-fixing measures for 10 years were investigated to determine the BSC development status and soil properties. The algal and lichen crusts accounted for 48.75 % and 26.25 % of the total quadrat number, respectively, indicating an obvious recovery effect of BSC (only 25 % for bare sand). The developmental level of BSC gradually increased from the top to the bottom of the dunes (Li 0 -> Li 6),which was consistent with the distribution pattern of BSCs on natural dunes. Compared with bare sand, the soil organic carbon (13.85 % and 23.07 % increases), total nitrogen (12.55 % and 23.95 % increases), total potassium (9.30 % and 8.24 % increases), and available nitrogen (23.97 % and 61.41 % increases) contents of algal and lichen crusts were significantly increased, and lichen crusts had markedly higher increase effect than algal crusts. The BSC development markedly reduced soil pH (0.49 % and 0.50 % decreased) and increased electrical conductivity(11.99 % and 10.68 % increases), resulting in improved soil microenvironment. Soil properties showed significant linear relationships with BSC development level, and an optimal fitting (R2 = 0.770 or 0.780) was detected for the soil fertility index. Based on the soil property matrix, the bare sands, algal, and lichen crusts were markedly separated along the first axis in the PCA biplot, which once again confirmed the significant positive effect of BSC recovery on soil fertility improvement. Consequently, in the early stage of sand-fixation (e.g., < = 10 years) by reed checkerboards on the damaged desert surface, BSC recovery can well promote and predict soil fertility in this area. The results provide a reliable theoretical basis for the restoration technology and scientific management of degraded sandy desert ecosystems.
This computational study focuses on the thermo-hydro-mechanical simulations of the behaviors of freezing soils used for artificial ground freezing (AGF) in a metro project. Leveraging the experimental and field data available in the literature, we simulate the sequential freezing and excavation of a twin tunneling that occurred in months during the actual construction of the tunnel. A thermo-hydro-mechanical model is developed to capture the multi-physical rate-dependent behaviors triggered by phase transitions, as well as the creeping and secondary consolidation of the soil skeleton and the ice crystals. We then calibrate the material models and establish the THM finite element model coupled with the rate-dependent multi-physical models, which may accurately predict the surface heave induced by ground freezing throughout the project. To showcase the potential of using simulations to guide the AGF, we simulate the scenario where a simultaneous freezing scheme is employed as an alternative to the actual sequential scheme design. We then compared the simulated performance with the recorded results obtained from the sequential scheme. Finally, parametric studies on the effect of ground temperature, the porosity of the frozen soil, and the intrinsic elastic modulus of the solid skeleton are conducted. The maximum surface heave is inferred from finite element simulations to quantify the sensitivity and the impact on the safety of AGF operations.
The hydraulic effect of plant roots reduces precipitation infiltration and enhances shallow slope stability. However, after root death and decay, soil permeability increases while water-retention capacity decreases. The time-varying mechanisms governing the hydraulic properties of root-soil composites after root decay remain unclear. This study examines the evolution of soil pore structure following root decay. A time-varying soil water retention curve (SWRC) model was developed to characterize changes in water-retention capacity. Additionally, a time-varying saturated infiltration coefficient model and a permeability coefficient prediction model were established to describe variations in hydraulic properties. A one-dimensional soil column infiltration test was conducted on root-soil composites at different stages of root decay to investigate the time-dependent changes in hydraulic properties. The reliability of the proposed models was validated using experimental results. The findings indicate the following: After root death, root biomass, diameter, length, and number decreased with increasing decay time, stabilizing after four months. Root decay led to a reduction in root volume ratio, which altered soil structure and enhanced the permeability of root-soil composites. Longer decay periods increased soil porosity, modifying the soil water characteristic curve and reducing water-retention capacity. Creeping roots decayed more significantly than fibrous roots due to their distinct morphological traits, making changes in hydraulic properties more pronounced in the topsoil. Therefore, plant root decay negatively affects soil hydraulic properties by continuously altering soil pore structure. These findings provide a crucial foundation for understanding the time-dependent mechanisms of hydraulic property variations in root-soil composites during plant root decay.
Freeze-thaw cycles pose a serious threat to the protection and preservation of earthen sites. To investigate the effects of freeze-thaw cycles on the shear strength and permeability of site soil, this study took artificially prepared site soil as the research object. Through triaxial shear tests and permeability tests, the strength and permeability characteristics of site soil under different sticky rice slurry content, sticky rice slurry density and freeze-thaw cycles were analyzed. In addition, the mineral composition, chemical structure, and microstructural characteristics of the samples were investigated by combining X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) tests. The results showed that the addition of sticky rice slurry could increase the shear strength and decrease the permeability coefficient of the soil, while the opposite effect was exhibited after freeze-thaw cycle. The optimum ratio of loess to sticky rice slurry was 95:5, and the optimum density of sticky rice slurry was 1.04 g/cm3. The addition of sticky rice slurry and the increase in the number of freeze-thaw cycles did not significantly change the mineral composition of the soil. The SEM results showed that the morphology and arrangement of soil particles became complex after freeze-thaw cycle, the inter-particle connections became loose, and the pore morphology became irregular. The surface porosity of the soil increased, and the proportion of large and medium pores increased. The directionality of the pores was enhanced, and the complexity of the pores increased. The pore arrangement became relatively stable after 15 freeze-thaw cycles. These findings can provide a reference for the restoration of ancient sites in loess areas.
BACKGROUND Weed-resistance phenomena have increased dramatically in recent years. Bioherbicides can offer a sustainable alternative to chemical weed control but they often have low water solubility and therefore low efficacy in the field. The research reported here represents the first study on the field efficacy against weeds of a nanoencapsulated bioherbicide mimic of aminophenoxazinones, namely DiS-NH2 (2,2 '-disulphanediyldianiline). Field experiments were carried out across three different locations to evaluate the bioherbicide disulphide mimic at standard (T1, 0.75 g m(-2)) and double (T2, 1.5 g m(-2)) doses when compared to no weed control (NC) and chemical weed controlled (PC) in durum wheat. RESULTS The nanoencapsulated bioherbicide displayed better soil permeability than the free compound and also showed lower ecotoxicity on comparing the toxic doses on the Caenorhabditis elegans nematode model. It was found that T2 gave the best performance in terms of phytotoxicity (-57% weed biomass when compared with NC) and crop yield enhancement (3.2 versus 2.2 Mg ha(-1) grain yield), while T1 showed comparable results to PC. T1 and T2 did not cause shifts in weed communities and this is consistent with a broad spectrum of phytotoxicity. Moreover, the nanoparticle formulation tested in this study provided stable results across all three locations. CONCLUSION It is reported here for the first time that a nanoencapsulated DiS-NH2 bioherbicide mimic provided an efficient post-emergence and contact bioherbicide that can control a wide range of weed species in durum wheat without damaging the crop. The mimic also has low ecotoxicity and improved soil permeability. (c) 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
True triaxial tests were conducted on artificially frozen sand. The effects of the intermediate principal stress coefficient, temperature and confining pressure on the strength of frozen sand were studied. The stress-strain curves under different initial conditions indicated a strain hardening. In response to increases of either the intermediate principal stress coefficient or the confining pressure or to a decrease of temperature, the strength typically increased. Furthermore, a new strength criterion was proposed to describe the strength of artificially frozen sand under a constant b-value stress path, combining the strength function in the p-q and pi planes. Considering the low confining pressure, the strength criterion in the p-q plane fitted the linear relationship in the parabolic strength criterion well. The strength criterion in the pi plane was combined with stress invariants, and a new strength criterion was established. This criterion considers unequal tension and compression strength, and integrates temperature. Test results indicated its validity. All parameters of the strength criterion could be easily determined from the triaxial compression and triaxial tensile tests.
A large-strain model was developed to study the consolidation behavior of soil deposits improved with prefabricated vertical drains and subjected to surcharge and vacuum preloading. The smear effect resulting from the installation of drains was incorporated in the model by taking the average values of permeability and compressibility in the smear zone. The dependence of permeability and compressibility on void ratio and the effects of non-Darcian flow at low hydraulic gradients were also incorporated in the model. The creep effect was also taken into account for secondary consolidation of soft soil deposits. The model was applied to two different embankments located at Suvarnabhumi International Airport, Thailand, and Leneghan, Australia. It was observed that the creep effect led to an additional settlement of 12%-17% after the primary consolidation phase. The study further demonstrated that creep settlements increased with the non-Darcian effect. The difference between surface settlement results with and without the creep effect increased from about 12% to 15% when the non-Darcian parameter (n) increased from 1 to 1.6. However, beyond a threshold value of n >= 1.6, the influence of non-Darcian flow on creep settlement diminished. The value of average and actual effective stresses increased by about 13% and 17%, respectively, when the value of n increased from 1 to 2. However, the impact of n on effective stresses became negligible for values of n >= 2.5. The rate of consolidation decreased approximately by about four times when the permeability ratio ((k) over tilde (u)/(k) over tilde (s)) increased from 1 to 5.