A cast-in-place pile foundation, widely utilized in the permafrost regions of the Qinghai-Tibet Plateau, boasts superior load-bearing capacity, effectively mitigating the seasonal freeze-thaw effects. In permafrost regions, substantial pile foundation load-bearing capacity is provided by freezing strength, with the freezing strength determined by the temperature of the surrounding permafrost. In modern times, global warming has been causing permafrost degradation, posing a risk to the safety of existing pile foundations. In order to maintain the stability of these foundations, it is crucial to release excess ground heat, considering the temperature-dependent freezing strength of the ground to pile shaft. Two-phase closed thermosyphons (TPCTs) have demonstrated strong performance in the realm of cooling permafrost engineering. In this study, TPCTs were utilized to mitigate the impact of permafrost degradation by installing them around a concrete pile in order to cool the foundation ground. Following this installation, a model experiment was carried out, which ingeniously focused on analyzing the cooling performance, the process of cold energy dissipation, and the cooling scope of the TPCT pile. The study's findings indicate that the operation time of the TPCT pile accounted for about 50% of the entire freeze-thaw cycle. This device could effectively cool the surrounding foundation soil within a specified area. The TPCT pile exhibited a low temperature advantage of 0.36 degrees C in comparison with the scenario without TPCT in terms of surrounding geotemperature, although it experienced significant cold energy dissipation. The conclusions drawn from this study have significant value for maintaining piles in permafrost regions.
Seasonal freeze-thaw (F-T) cycles significantly affect the mechanical properties of soils and the behavior of pile foundations in soils subjected to F-T cycles under different loading conditions. Soils exposed to F-T cycles can impact the performance of pile foundations. Consequently, the effects of F-T cycles should be taken into account when designing piles, particularly in cold regions such as Canada. In recent years, climatic conditions in Canada have changed due to global warming, increasing the number of F-T cycles in many regions each year. This study aimed to investigate the influence of different numbers of F-T cycles on the behavior of piles in sandy soils. Laboratory experiments were conducted on physical models of piles subjected to axial (uplift) and lateral loads combined with F-T cycles. The model was scaled using standard scaling principles, and the test apparatus was equipped with various sensors to measure temperatures, forces, and displacements. The results showed that as the number of F-T cycles increased, the lateral capacities of the piles under individual and combined loads increased steadily. The lateral load capacity increased from 350 to 430 N after five F-T cycles under individual loading and from 225 to 455 N after five F-T cycles under combined loading. However, the pile's uplift load capacity remained constant under individual and combined loads and there was no change due to F-T cycles. The results of this experimental study will be useful for understanding the behavior of piles subjected to seasonal F-T cycles and for improving the design of pile foundations in cold regions.
The warming and melting of permafrost due to climate warming pose a considerable threat to the integrity of the Pan Arctic building, thus jeopardizing sustainable development. The increase in ambient temperature in permafrost areas will cause deterioration in the bearing capacity of building pile foundations. Considering the continuous deepening of the active layer (za), the present paper used small-scale physical modeling to investigate the potential variation of bearing capacity and load transfer mechanism of pile foundations under the scenario of continuous degradation of permafrost. The ultimate bearing capacity of a single pile and the undrained shear strength of the ground under different za are estimated by cone penetration tests. In the static load test of single piles, the axial load-settlement, axial force of pile shaft, and earth pressure at the pile tip are measured. The results show that the rise in ground temperature and the deepening of the za shorten the elastic and elastic-plastic stages of the load-displacement curve, resulting in a gradual decline in the bearing capacity of a single pile. The pile-soil interface temperature is always higher than the adjacent ground temperature at the same depth. Adfreezing force of the pile-soil interface decreases due to the increase in ground temperature and water content. With the deepening of za, the peak point of the shaft resistance decreases from -30 cm to -60 cm under the ultimate state. Meanwhile, with more axial load transfer along the pile shaft to the pile tip, the share ratio of pile tip resistance to ultimate stress gradually increases. In addition, the temperature rise of frozen soil at the pile tip accelerates the settling rate of the pile, which eventually causes the pile foundation failure.
To ensure that public infrastructure can safely provide essential services and support economic activities in seasonal frost regions, the design of their foundation systems must be updated and/or adapted to the impacts of climate change. This objective can only be achieved, if the impact of global warming on the soil thermal behaviour in Canadian seasonal frost regions is well-known and can be predicted. In the present paper, the results of a modeling study to assess and predict the effect of global warming on the thermal regimes of grounds in three Canadian seasonal frost regions (Ottawa, Sudbury, Toronto) are presented and discussed. The results show that future climate changes will significantly affect the soil thermal regimes in seasonal frost Canadian areas. The simulation results indicated a gradual loss in the frost penetration depth due to the climate change, in the three representative sites. The frost period duration will be shorter due to climate change in the three selected regions and will completely disappear in Ottawa and Toronto. However, the impact of climate change would not appear clearly in the first 40 years up to 2060. The response of the ground to the effect of climate change is a function of the geotechnical characteristics of the ground and the climate conditions. The numerical tool developed and results obtained will be useful for the geotechnical design of climate-adaptive transportation structures in Canadian seasonal frost areas.
This paper takes the representative buried structure in permafrost regions, a transmission line tower foundation, as the research object. An inverse prediction is conducted in a scaled-down experimental system mimicking actual heat conduction of the frozen ground in a tower foundation. In permafrost regions, global warming and the heat transfer through the buried structures bring significantly adverse thermal effects on the stability of the infrastructures. In modeling the thermal effects, it has been a challenge to determine the ground surface boundary condition and heat source strength from the buried structures due to the complex climate and environmental conditions. In this work, based on the improved model predictive inverse method with an adaptive strategy, an inverse scheme is successfully implemented to simultaneously identify the time-varying surface temperature and the time-space-dependent heat source representing the buried structures. In this scheme, an adaptive time-varying predictive model is established by the rolling update of the sensitivity response coefficients according to the predicted temperature field to overcome the influence of nonlinear characteristics in the heat transfer process. The inverse method is verified by simulation and experimental data. According to the experimental inversion results, the reconstructed temperature distribution efficiently predicts the thermal state evolution of the permafrost foundation under seasonal freezing and thawing. It is found that, under the experimental conditions, the intensified thawing and freezing are significantly severe, e.g., the increased area ratio of active layer thickness is as high as 28% after building a tower, and the depth of permafrost table ranges from about 14 mm to about 38 mm, which could be detrimental to the stability and safety of the tower foundation. This study will provide valuable guidance for risk assessments or optimizing the design and maintenance of the real tower foundation and similar buried structures.
Most residential buildings and capital structures in the permafrost zone are constructed on the principle of maintaining the frozen state of the foundation soils. The changing climate and the increasing anthropogenic impact on the environment lead to changes in the boundaries of permafrost. These changes are especially relevant in the areas of piling foundations of residential buildings and other engineering structures located in the northern regions since they can lead to serious accidents caused by the degradation of permafrost and decrease the bearing capacity of the soil in such areas. Therefore, organization of temperature monitoring and forecasting of temperature changes in the soil under the buildings is an actual problem. To solve this problem, we use computer simulation methods of three-dimensional nonstationary thermal fields in the soil in combination with real-time monitoring of the temperature of the soil in thermometric wells. The developed approach is verified by using the temperature monitoring data for a specific residential building in the city of Salekhard. Comparison of the results of numerical calculations with experimental data showed good agreement. Using the developed computer software, nonstationary temperature fields under this building are obtained and, on this basis, the bearing capacities of all piles are calculated and a forecast of their changes in the future is given. To avoid decreasing the bearing capacity of piles it is necessary to prevent the degradation of permafrost and to supply the thermal stabilization of the soil. The proposed approach, based on a combination of the soil temperature monitoring and computer modeling methods, can be used to improve geotechnical monitoring methods.
At present, the improvement of the horizontal bearing capacity of the piles by pre-consolidation of the soft soil foundation has been well recognized by practising engineers. However, how to estimate the increment of horizontal bearing capacity of piles during the pre-engineering process is still difficult. In this article, a practical calculation method for estimating the increment of horizontal bearing capacity of piles is established based on the Bowles[1] method and by considering the impact of pre-drainage and pre-consolidation treatment of the layered soft soil foundation. This method provides an effective way to calculate the shear strength index and pre-consolidation treatment time based on the shear strength of undisturbed soft soil by laboratory test. Meanwhile, the elastoplastic solution of the horizontally loaded pile and the calculation formula of the plastic zone depth of layered soft soil foundation are analytically derived, based on the influence of elastoplastic yielding of soils surrounding the pile. In addition, the source code for computing the horizontal displacement of the pile top and the maximum bending moment of the pile body are given. Finally, the horizontal displacement, bearing capacity and the maximum bending moment of piles in the sluice pile foundation engineering case in Zhejiang Province are calculated according to the proposed method. The results of the field tests before and after the pre-consolidation treatments are compared. It is found that the estimated results are close to the test results, which may provide a good reference for similar engineering designs.