Permafrost soils contain approximately twice the amount of carbon as the atmosphere and this carbon could be released with Arctic warming, further impacting climate. Mosses are major component of Arctic tundra ecosystems, but the environmental drivers controlling heat penetration though the moss layer and into the soil and permafrost are still debated, especially at fine spatial scales where microtopography impacts both vegetation and soil moisture. This study measured soil temperature profiles (1-15 cm), summer thaw depth, water table depth, soil moisture, and moss thickness at a fine spatial scale (2 m) together with meteorological variables to identify the most important controls on the development of the thaw depth during two Arctic summers. We found a negative relationship between the green moss thickness (up to 3 cm) and the soil temperatures at 15 cm, suggesting that mosses insulated the soil even at high volumetric water contents (>70%) in the top 5 cm. A drier top (2-3 cm) green moss layer better insulated deep (15 cm) soil layers by reducing soil thermal conductivity, even if the moss layers immediately below the top layer were saturated. The thickness of the top green moss layer had the strongest relationships with deeper soil temperatures, suggesting that the top layer had the most relevant role in regulating heat transfer into deeper soils. Further drying of the top green moss layer could better insulate the soil and prevent permafrost thawing, representing a negative feedback on climate warming, but damage or loss of the moss layer due to drought or fire could reduce its insulating effects and release carbon stored in the permafrost, representing a positive feedback to climate warming.
The thermal stability of permafrost, a foundation for engineering infrastructure in cold regions, is increasingly threatened by the dual stressors of climate change and anthropogenic disturbance. This study investigates the dynamics of the crushed rock revetted embankment at the Kunlun Mountain Section of the Qinghai-Tibet Railway, systematically investigating the coupled impacts of climate warming and engineering activities on permafrost thermal stability using borehole temperature monitoring data (2008-2024) and climatic parameter analysis. Results show that under climate-driven effects, the study area experienced an air temperature increase of 0.2 degrees C per decade over the 2015-2024. Concurrently, the mean annual air thawing degree-days (TDD) rose by 13.8 degrees C center dot d/a, leading to active-layer thickening at a rate of 3.8 cm center dot a- 1at natural ground sites. From 2008 to 2024, the active layer had thickened by 0.7-0.8 m. At the embankment toe (BH 5), the active-layer thickening rate (3.3 cm center dot a- 1) was 25 % lower than that at the natural ground borehole (3.8 cm center dot a- 1); correspondingly, the underlying permafrost temperature increase rate at the toe (0.3 degrees C per decade) was lower than that at the natural borehole (0.5-0.6 degrees C per decade). Permafrost warming rates decreased with depth. Shallow layers (above -2 m) were significantly influenced by climate, with warming rates of 0.3-0.6 degrees C per decade. In contrast, deep layers (below -10 m) showed warming rates converging with the background atmospheric temperature trend (0.2 degrees C per decade). Thermal regime disturbance was most pronounced at horizontal distances of 3.0-5.0 m from the embankment. Nevertheless, the crushed-rock revetment maintained a permafrost table 0.6 m shallower than that of natural ground, confirming its thermal diode effect (facilitating convective cooling in winter), which partially offset climate warming impacts. This study provides critical empirical data and validates the cooling mechanism of crushed-rock revetment, which is essential for predicting the long-term thermal stability and informing adaptive maintenance strategies for railway infrastructure in warming permafrost regions.
Ground ice, cryostratigraphical and sediment analyses have been done on samples from 16 boreholes covering the different landforms in the lower part of the valley Longyeardalen, where the largest settlement in Svalbard, Longyearbyen, is located. This allows the production of the first ever top 1 m permafrost ice content map showing the spatial distribution of ground ice (excess ice content) for the Longyearbyen area based on the collected ground ice data and the quaternary geology map of the valley. The valley was infilled since deglaciation with up to 45 m of mainly alluvial sediment and marine mud, whereas colluvial and till deposits with thicknesses from less than 1 m to more than 7 m are dominating the hillsides surrounding the valley. Rock glaciers and ice cored moraines are the landforms with the highest ice content, with assumed over 20% excess ice in the top metre of permafrost. Till and solifluction material has a medium ice content with 10%-20% excess ice content, whereas colluvial deposits have a low ice content with 5%-10% excess ice content. These landforms all have an active layer thickness between 1.6 and 2.2 m. Alluvial deposits in the valley floor has the lowest ice content with 0%-2% excess ice content. Pore ice, suspended ice and reticulate cryostructures dominates the ground ice types, with layered, lenticular and porphyritic cryostructures also present. Marine sediments are widespread and only found in the lower parts of the valley beneath the marine limit. These findings are important to understand and to be prepared for increased landslide risk that is expected due climate warming thawing the top of permafrost and bringing more rainfall in the near future.
Ecosystem carbon use efficiency (CUE) is a key indicator of an ecosystem's capacity to function as a carbon sink. While previous studies have predominantly focused on how climate and resource availability affect CUE through physiological processes during the growing season, the role of canopy structure in regulating carbon and energy exchange, especially its interactions with winter climate processes and nitrogen use efficiency (NUE) in shaping ecosystem CUE in semi-arid grasslands, remains insufficiently understood. Here, we conducted a 5-year snow manipulation experiment in a temperate grassland to investigate the effects of deepened snow on ecosystem CUE. We measured ecosystem carbon fluxes, soil nitrogen concentration, species biomass, plants' nitrogen concentration, canopy height and cover and species composition. We found that deepened snow increased soil nitrogen availability, while the concurrent rise in soil moisture facilitated nutrient acquisition and utilization. Together, these changes supported greater biomass accumulation per unit of nitrogen uptake, thereby enhancing NUE. In addition, deepened snow favoured the dominance of C3 grasses, which generally exhibit higher NUE and greater height than C3 forbs, providing a second pathway that further elevated community-level NUE. The enhanced NUE, through both physiological efficiency and compositional shifts, promoted biomass production and facilitated the development of larger canopy volumes. Larger canopy volumes under deepened snow increased gross primary production through improved light interception, while the associated increase in autotrophic maintenance respiration was moderated by higher NUE. Besides, denser canopies reduced understorey temperatures throughout the day, particularly at night, thereby suppressing heterotrophic respiration. Ultimately, deepened snow increased ecosystem CUE by enhancing carbon uptake while limiting respiratory carbon losses. Synthesis. These findings demonstrated the crucial role of biophysical processes associated with canopy structure and NUE in regulating ecosystem CUE, which has been largely overlooked in previous studies. We also highlight the importance of winter processes in shaping carbon sequestration dynamics and their potential to modulate future grassland responses to climate change.
The Three-Rivers Headwater Region (TRHR) is located on the Tibetan Plateau, within a transitional zone between seasonally frozen ground and continuous permafrost. Over 70 % of the region is predominantly covered by alpine grasslands, a vulnerable ecosystem increasingly threatened by ongoing permafrost degradation. This study utilized satellite data to analyze permafrost degradation by measuring active layer thickness (ALT) and the soil non-frozen period (NFP), and to investigate their impacts on alpine grassland growth. Results showed significant permafrost degradation from 2000 to 2020, with ALT thickening at a rate of 7.79 cm/decade (p < 0.05) and NFP lengthening by 1.1 days/yr (p < 0.05). Simultaneously, grassland vegetation exhibited a significant greening trend (0.0014 yr(-1), p < 0.01). Using the partial least squares (PLS) regression method, the study evaluated the relationships between grassland dynamics and permafrost degradation, while jointly accounting for climate variables (temperature, precipitation, and sunshine duration). ALT thickening was the dominant explanatory variable for grassland growth in 11.09 % of the region, and it was positively correlated in relatively cold western and alpine areas, but negatively correlated in the relatively warm eastern and central regions. NFP extension was the dominant explanatory variable for grassland growth in 10.38 % of the region, although its positive correlation weakened as climate conditions transitioned from relatively cold-dry to relatively warm-wet. Although permafrost degradation was positively correlated with grassland greening in relatively cold regions, the diminishing benefit of NFP extension and the adverse effects of ALT thickening may increasingly undermine grassland stability in relatively warm regions under further climate warming.
The reasonable value of good gradation characteristic parameters is key in designing and optimising soil-rock mixed high fill embankment materials. Firstly, the DJSZ-150 dynamic-static large-scale triaxial testing instrument was used for triaxial compression shear tests on compacted skeleton structure soil-rock mixture standard specimens. The changes in strength and deformation indicators under different gradation parameters and confining pressure were analysed. Then, based on the Janbu empirical formula, relationships between parameters K, n, and (sigma 1-sigma 3)ult and the coefficient of uniformity Cu and coefficient of curvature Cc were explored. Empirical fitting formulas for Duncan-Chang model constants a and b were proposed, establishing an improved Duncan-Chang model for soil-rock mixtures considering gradation characteristics and stress states. Finally, based on significant differences in particle spatial distribution caused by gradation changes, three generalised models of matrix-block stone motion from different particle aggregation forms were proposed. Results indicate the standard specimen's strength and deformation indicators exhibit significant gradation effects and stress-state correlations. The improved Duncan-Chang model effectively simulates the stress-strain relationship curve under different gradations and confining pressure, with its characteristics explainable based on the matrix block stone motion generalised model.
Most gravel roads leading to rural areas in Ghana have soft spot sections as a result of weak lateritic subgrade layers. This study presents a laboratory investigation on a typical weak lateritic subgrade soil reinforced with non-woven fibers. The objective was to investigate the strength characteristic of the soil reinforced with non-woven fibers. The California Bearing Ratio and Unconfined Compressive Strength tests were conducted by placing the fibers in single layer and also in multiple layers. The results showed an improved strength of the soil from a CBR value of 7%. The CBR recorded maximum values of 30% and 21% for coconut and palm fibers inclusion at a placement depth of H/5 from the compacted surface. Multiple fiber layer application at depths of H/5 & 2 h/5 yielded CBR values of 38% and 31% for coconut and palm fibers respectively. The Giroud and Noiray design method and the Indian Road Congress design method recorded reduction in the thickness of pavement of 56% to 63% for coconut fiber inclusion and 45% to 55% for palm fiber inclusion. Two-way statistical analysis of variance (ANOVA) showed significant effect of depth of fiber placement and fiber type on the geotechnical characteristics considered. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic),CBR(sic)(sic)7%(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)H/5(sic)(sic)(sic)(sic)(sic)(sic),CBR(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)30%(sic)21%. (sic)H/5(sic)2H/5(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)CBR(sic)(sic)(sic)(sic)38%(sic)31%. Giroud&Noiray(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)56%(sic)63%,(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)45%(sic)55%. (sic)(sic)(sic)(sic)(sic)(sic)(ANOVA)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
In highway construction across the southeastern coastal regions of China, granite residual soil is widely used as subgrade fill material in pavement engineering. Its mechanical behaviour under dynamic loads warrants in-depth investigation. Dynamic events such as vehicular traffic and earthquakes are complex, involving multidirectional loads. The dynamic behaviour of soil under bidirectional cyclic loading differs significantly from that under cyclic loading in one direction. A large-scale bidirectional cyclic direct shear apparatus was utilised to carry on a series of horizontal cyclic direct shear tests on granite residual soil with water contents of 14% and 24% at different normal stress amplitudes (sigma a) (0, 100, 200 kPa). Based on these tests, discrete element method (DEM) models were developed to simulate the laboratory tests. The test results revealed that cyclic normal stress increases dynamic shear strength during forward shear but reduces it during reverse shear. The energy dissipation capacity increases with rising sigma a. The dynamic behaviour of granite residual soil is more significantly affected by cyclic normal stress when the water content is higher. The DEM simulation results indicated that as cyclic shearing progresses, the location of the maximum principal stress (sigma 1) shifts from the top of the specimen toward the shear interface. The distribution of the angle between sigma 1 and the x-axis, as well as sigma 1 and the z-axis, transitions from 'M' distribution to 'Arch' distribution. With increasing sigma a, during forward shear, the magnitude of the maximum principal stress increases, and the orientation of sigma 1 rotates toward the normal direction. Conversely, during reverse shear, the magnitude of the maximum principal stress decreases, and its orientation shifts toward the horizontal shear direction. The material fabric anisotropy coefficient decreases with increasing sigma a, while the anisotropy orientation increases with increasing normal stress.
The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Central and Eastern European geography, shaped by its entanglement of natural and social sciences, provides a distinctive lens for rethinking the unity of the discipline. Its historical and institutional hybridity makes the region particularly well positioned to foster integrative geographical perspectives. The objective of this study was to evaluate the present, post-transitional state of the discipline in Central and Eastern Europe (CEE), to identify its future trajectory and to uncover the significant role of CEE geography in addressing global environmental, social and economic challenges. To facilitate this process, four significant geographical topics have been identified as potentially providing a conducive environment for the partial reintegration of geography. The aforementioned themes encompass a range of topics, including migrations, the green transition, anthropogenic climate change, global tipping points, wetland disturbance, peatland carbon sequestration and cryosphere degradation. Furthermore, we have sought to assess the perspective and significance of geographical unity in addressing global crises that impact human life on Earth. This analysis has enabled the identification of critical issues that necessitate integrated approaches. The necessity for enhanced collaboration between physical and human geography, as well as between nature studies and social and economic explorations, is emphasised. In this regard, it is acknowledged that a more inclusive approach is employed in the field of CEE geography, with contributions from other disciplines such as biology, ecology, physics, sociology and economics being welcomed. These disciplines address processes that span from local to global scales, as well as those that study long-term phenomena, such as history and archaeology. The establishment of robust interdisciplinary networks has the potential to enhance the scientific standing of integrated geography and to strengthen innovative connections between human and physical geography.