Lakes are commonly accepted as a sensitive indicator of regional climate change, including the Tibetan Plateau (TP). This study took the Ranwu Lake, located in the southeastern TP, as the research object to investigate the relationship between the lake and regional hydroclimatological regimes. The well-known Budyko framework was utilized to explore the relationship and its causes. The results showed air temperature, evapotranspiration and potential evapotranspiration in the Ranwu Lake Basin generally increased, while precipitation, soil moisture, and glacier area decreased. The Budyko space indicated that the basin experienced an obviously drying phase first, and then a slightly wetting phase. An overall increase in lake area appears inconsistent with the drying phase of the basin climate. The inconsistency is attributable to the significant expansion of proglacial lakes due to glacial melting, possibly driven by the Atlantic Multidecadal Oscillation. Our findings should be helpful for understanding the complicated relationships between lakes and climate, and beneficial to water resources management under changing climates, especially in glacier basins.
Mountain permafrost extends over a vast area throughout the Chilean and Argentinean Andes, making it a key component of these mountain ecosystems. To develop an overview of the current state of knowledge on southern Andean permafrost, it is essential to outline appropriate research strategies in a warmer climate context. Based on a comprehensive review of existing literature, this work identifies eight main research themes on mountain permafrost in the Chilean and Argentinean Andes: paleoenvironmental reconstructions, permafrost-derived landforms inventories, permafrost distribution models, internal structure analysis, hydrogeochemistry, permafrost dynamics, geological hazards, and transitional landscape studies. This extensive review work also highlights key debates concerning the potential of permafrost as a water resource and the factors influencing its distribution. Furthermore, we identified several challenges the scientific community must address to gain a deeper understanding of mountain permafrost dynamics. Among these challenges, we suggest tackling the need to broaden spatial focus, along with the use of emerging technologies and methodologies. Additionally, we emphasize the importance of developing interdisciplinary approaches to effectively identify the impacts of climate change on mountain permafrost. Such efforts are essential for adequately preparing scientists, institutional entities, and society to address future scenarios.
Ny-& Aring;lesund, located in Arctic Svalbard, is one of the most sensitive areas on Earth to global warming. In recent years, accelerated glacier ablation has become remarkable in Ny-& Aring;lesund. Glacial meltwaters discharge a substantial quantity of materials to the ocean, affecting downstream ecosystems and adjacent oceans. In August 2015, various water samples were taken near Ny-& Aring;lesund, including ice marginal meltwater, proglacial meltwater, supraglacial meltwater, englacial meltwater, and groundwater. Trace metals (Al, Cr, Mn, Fe, Co, Cu, Zn, Cd, and Pb), major ions, alkalinity, pH, dissolved oxygen, water temperature and electric conductivity were also measured. Major ions were mainly controlled by chemical weathering intensity and reaction types, while trace metals were influenced by both chemical weathering and physicochemical control upon their mobility. Indeed, we found that Br & oslash;ggerbreen was dominated by carbonate weathering via carbonation of carbonate, while Austre Lov & eacute;nbreen and Pedersenbreen were dominated by sulfide oxidation coupled with carbonate dissolution with a doubled silicate weathering. The higher enrichment of trace metals in supraglacial meltwater compared to ice marginal and proglacial meltwater suggested anthropogenic pollution from atmospheric deposition. In ice marginal and proglacial meltwater, principal component analysis indicated that trace metals like Cr, Al, Co, Mn and Cd were correlated to chemical weathering. This implies that under accelerated glacier retreat, glacier-derived chemical components are subjected to future changes in weathering types and intensity.
To address data scarcity on long-term glacial discharge and inadequacies in simulating and predicting hydrological processes in the Tien Shan, this study analysed the observed discharge at multiple timescales over 1980s-2017 and projected changes within a representative glacierized high-mountain region: eastern Tien Shan, Central Asia. Hydrological processes were simulated to predict changes under four future scenarios (SSP1, SSP2, SSP3, and SSP5) using a classical hydrological model coupled with a glacier dynamics module. Discharge rates at annual, monthly (June, July, August) and daily timescales were obtained from two hydrological gauges: Urumqi Glacier No.1 hydrological station (UGH) and Zongkong station (ZK). Overall, annual and summer discharge increased significantly ( p < 0.05) at both stations over the study period. Their intra-annual variations mainly resulted from differences in their recharge mechanisms. The simulations show that a tipping point in annual discharge at UGH may occur between 2018 and 2024 under the four SSPs scenarios. Glacial discharge is predicted to cease earlier at ZK than at UGH. This relates to glacier type and size, suggesting basins with heavily developed small glaciers will reach peak discharge sooner, resulting in an earlier freshwater supply challenge. These findings serve as a reference for research into glacial runoff in Central Asia and provide a decision-making basis for planning local water-resource projects.
New soils formed after glacier retreat can provide insights into the rates of soil formation in the context of accelerated warming due to climate change. Recently deglacierized terrains (since the Little Ice Age) are subject to weathering and pedogenesis, and freshly exposed sediments are prone to react readily with the environment. This study aims to determine the impact of parent material and time on soil physical and chemical properties of nine proglacial landscapes distributed in the Tropical Andes and Alps. A total of 188 soil samples were collected along chronosequences of deglacierization and from sites that differed in terms of parent material and classified following three parent material groups: (1) Granodiorite-Tonalite (GT), (2) Gneiss-Shales-Schists (GSS), and (3) Mont-Blanc Granite (MBG). We determined physical and chemical soil properties such as contents of clay, silt, sand, organic carbon, bulk density (BD), pH, extractable cation (exCa, exMg, exK), elemental composition by Xray fluorescence (Al, Si, P, S, K, Ca, Mn, Fe, Cu, Zn, As, Mo, Hg, Pb) and ICP-MS (Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn), and mineral phase (XRD diffraction analysis). Parent material-controlled particle-size distribution, SOC, pH, available P, exCa, and exMg, whereas time since deglacierization only affected SOC and P, and exMg globally. Most of the significant differences in soil properties between parent material groups occurred within the first 17 years after deglacierization, and then we observed a homogenization between sites. While the higher SOC and P contents observed within the GT Andean sites might be due to the parent material composition leading to faster initial soil formation, we identified potential As, Cu, Mo, and Mn toxicity within those soils. Our study highlights the need to investigate further proglacial soil's buffering capacity and carbon sequestration to globally inform the conservation and management of novel proglacial ecosystems.
The areas covered by permafrost in the polar regions are vulnerable to rapid changes in the current climate. The well-studied near-surface active layer and permafrost zone are in contrast to the unknown exact shape of the bottom permafrost boundary. Therefore, the entire shape of permafrost between the upper and lower boundaries is not identified with sufficient accuracy. Since most of the factors affecting deep cryotic structures are subsurface in nature, their evolution in deeper layers is also relatively unclear. Here, we propose a hypothesis based on the results of geophysical studies regarding the shape of the permafrost in the coastal area of Svalbard, Southern Spitsbergen. In the article, we emphasize the importance of recognizing not only the uppermost active layer but also the bottom boundary of permafrost along with its transition zone, due to the underestimated potential role of its continuity in observing climate change. The lower permafrost boundary is estimated to range from 70 m below the surface in areas close to the shore to 180 m inland, while a continuous layer of an entirely frozen matrix can be identified with a thickness between 40 m and 100 m. We also hypothesized the presence of the possible subsea permafrost in the Hornsund. The influence of seawater intrusions, isostatic uplift of deglaciated areas, and surface-related processes that affect permafrost evolution may lead to extensive changes in the hy-drology and geology of the polar regions in the future. For all these reasons, monitoring, geophysical imaging and understanding the characteristics and evolution of deep permafrost structures requires global attention and scientific efforts.
A review of the status of research on high mountain soils and their alterations caused by changes in the cryosphere in the European Alps is given. Soils of high mountain environments are not only exposed to atmospheric warming, rising CO2 levels, and changing precipitation patterns but also to climate-driven changes in the cryosphere. The massive reduction of glacier coverage as well as snow cover and (perma) frost extent can affect soils in various ways. We performed a comprehensive literature analysis and considered both the direct impacts (changes in surface coverage or ground thermal conditions) and indirect impacts (changing hydrosphere, lithosphere/geomorphodynamics, or biosphere) of cryosphere changes on soil. All considered studies had a multidisciplinary character: around 34% of the articles covered two spheres (cryosphere, pedosphere), 40% covered three spheres (cryosphere, pedosphere, and an additional sphere), and 26% covered more than three spheres. Most studies focused on initial soil formation in glacier forefields. The impact of changing geomorphodynamics on soils is underrepresented in literature, even though it is one of the major consequences of changes in the cryosphere. We therefore finally discuss possible consequences of changing geomorphodynamics due to changes in the cryosphere for high mountain soils.
Robust streamflow simulation at glacial basins is essential for the improvement of water sustainability assessment, water security evaluation, and water resource management under the rapidly changing climate. Therefore, we proposed a hybrid modelling framework to link the SWAT+ model considering glacial hydrological processes (GSWAT+) with Gated Recurrent Unit (GRU) neural networks to improve the model simulations and to establish a framework for the robust simulation and forecast of high and low flows in glacial river basins, which could be further used for the explorations of extreme hydrological events under a warming climate. The performance of different models (GSWAT+, GRU, and GRU-GSWAT+, respectively) were thoroughly investigated based on numerical experiments for two data-scarce glacial watersheds in Northwest China. The results suggested that the hybrid model (GRU-GSWAT+) outperformed both the individual deep learning (DL) model (GRU) and the conventional hydrological model (GSWAT+) in terms of simulation and prediction accuracy. Notably, the proposed hybrid model considerably enhanced the simulations of low and high flows that the conventional GSWAT+ failed to capture. Furthermore, utilizing suitable data integration (DI) schemes on feature and target sequences can substantially help to strengthen model stability and representativeness for monthly and annual streamflow sequences. Specifically, introducing one order differential method and decomposition approach, such as ensemble empirical signal decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN), into feature and target sequences enriched the learnable ancillary information, which consequently strengthened the predictive performance of the proposed model. Overall, the proposed hybrid model with the suitable DI scheme has the potential to significantly enhance the accuracy of streamflow simulation in data-scarce glacial river basins. This hybrid model not only upheld the fundamental physical principles from the GSWAT+ model, but also considerably mitigated the accumulated bias errors, which caused by the shortage of climate data and inadequate hydrological principles, by using DL based model and DI schemes.
Soil respiration is one of the dominant fluxes of CO2 from terrestrial ecosystems to the atmosphere. Accurate quantification of soil respiration is essential for robust projection of future climate variation and for reliable estimation of paleoatmospheric CO2 levels using soil carbonates. Soil-respired CO2, which is the most uncertain factor in estimating atmospheric CO2 concentration, has been calculated from modern observations of surface soils and from proxy indicators of paleosols formed during time periods of known atmospheric CO2. However, these estimations provide a wide range of S(z) values from past to present. To directly compare modern observation with past estimation, here we first monitored soil CO2 profiles in a Holocene profile on the western Chinese Loess Plateau (CLP) for two years, providing direct measurements of soil-respired (CO2 )at the depth where carbonate nodules likely formed. We then collected carbonate nodules below last interglacial paleosol (S1) from two N-S-aligned transects across the CLP to back-calculate soil-respired CO2. The mean back-calculated S(z) from S1 carbonate nodules vary from 539 +/- 87 ppm to 848 +/- 170 ppm in the sections on the northwestern and southeastern CLP, respectively. The mean value of directly measured soil-respired CO2 on the western CLP is 572 + 273 ppm before the onset of summer monsoon, consistent with the back-calculated S(z) in northwestern sections. Our results suggest that spatial S(z) variations are mainly controlled by monsoonal precipitation during the summer season on the CLP. To better constrain the high end of S(z), more monitoring work is needed in higher precipitation areas on the southeastern CLP.
There is an increased awareness that the biogeochemical cycling at high latitudes will be affected by a changing climate. However, because biogeochemical studies most often focus on a limited number of elements (i.e., C, P and N) we lack baseline conditions for many elements. In this work, we present a 42-element mass-balance budget for lake dominated catchment in West Greenland. By combining site specific concentration data from various catchment compartments (precipitation, active layer soils, groundwater, permafrost, lake water, lake sediments and biota) with catchment geometries and hydrological fluxes from a distributed hydrological model we have assessed present-day mobilization, transport and accumulation of a whole suite of elements with different biogeochemical behavior. Our study shows that, under the cold and dry conditions that prevails close to the inland ice-sheet: i) eolian processes are important for the transport of elements associated with mineral particles (e.g., Al, Ti, Si), and that these elements tend to accumulate in the lake sediment, ii) that even if weathering rates are slowed down by the dry and cold climate, weathering in terrestrial soils is an important source for many elements (e.g., lanthanides), iii) that the cold and dry conditions results in an accumulation of elements supplied by wet deposition (e.g., halogens) in both terrestrial soils and the lake-water column, and iv) that lead and sulfur from legacy pollution are currently being released from the terrestrial system. All these processes are affected by the climate, and we can therefore expect that the cycling of the majority of the 42 studied elements will change in the future. However, it is not always possible to predict the direction of this change, which shows that more multi-element biogeochemical studies are needed to increase our understanding of the consequences of a changing climate for the Arctic environment.