共检索到 138

To investigate the coupled time effects of root reinforcement and wet-dry deterioration in herbaceous plant-loess composites, as well as their microscopic mechanisms, this study focused on alfalfa root-loess composites at different growth stages cultivated under controlled conditions. The research included measuring root morphological parameters, conducting wet-dry cycling tests, and performing triaxial compression tests and microscopic analyses (CT scanning and nuclear magnetic resonance) on both bare loess and root-loess composites under various wet-dry cycling conditions. By obtaining shear strength parameters and microstructural indices, the study analyzed the temporal evolution of the shear strength and microstructural characteristics of root-loess composites under wet-dry cycling. The findings indicated that the alfalfa root-loess composite effective cohesion was significantly higher than that of the plain soil in the same growth stage. The alfalfa root-loess composite effective cohesion increased during the growth stage in the same dry-wet cycles. The alfalfa root-loess composite effective cohesion in the same growth stage was negatively correlated with the number of dry-wet cycles. The fatigue damage of the soil's microstructure (pore coarsening, cement hydrolysis, and crack development) increased continuously with the number of dry-wet cycles. However, due to the difference in mechanical properties between roots and the soil, the root-soil composite prevented the deterioration of the soil matrix strength by the dry-wet cycles. As the herbaceous plants grow, the time effect observed in the shear strength of the root-soil composite under the action of dry-wet cycles is the result of the interaction and dynamic coordination between the soil-stabilizing function of the herbaceous plant roots and the deterioration caused by drywet cycles.

期刊论文 2025-11-01 DOI: 10.1016/j.still.2025.106684 ISSN: 0167-1987

Atrazine (ATR) is a widely utilized herbicide that has been demonstrated to exert a multitude of deleterious effects on the environment, particularly with regard to water and soil contamination. Moreover, its disruption of endocrine function and implications for antibiotic resistance underscore the urgent need to prioritize alternative solutions for both ecosystems and human health. Therefore, the objective of this study was to investigate a range of neurotoxic effects associated with atrazine-induced damage in the prefrontal lobe of mice. The results of this study indicate that treatment with ATR in C57BL/6 J mice resulted in cognitive-related behavioral deficits, including anxiety and depression, as well as motor impairments. In vivo analyses demonstrated that ATR exposure resulted in a reduction in neuronal synapse density at the microstructural level, while also compromising prefrontal morphological integrity, nociceptor count, and overall neuronal health within the brain. These findings collectively suggest that synaptic deficits are implicated in ATR-induced behavioral abnormalities observed in these mice. Furthermore, our findings revealed that ATR exposure resulted in elevated TDP-43 expression levels that were ectopically localized within the cytoplasm. This alteration led to impaired functionality of mRNP granules and contributed to the development of abnormal synaptic defects. Conversely, TDP43 has the potential to localize ectopically to mitochondria, where it activates the mitochondrial unfolded protein response (UPRmt), which ultimately results in mitochondrial dysfunction. These findings collectively indicate a strong correlation between TDP-43 dysregulation and the progression of neurodegenerative diseases. Further investigation into the potential neurotoxicity of atrazine may foster heightened awareness, leading to more stringent regulatory measures, research into safer alternatives, and the adoption of sustainable practices, which are essential for safeguarding environmental integrity alongside human health.

期刊论文 2025-08-01 DOI: 10.1016/j.tox.2025.154128 ISSN: 0300-483X

The generation of excess pore water pressure (EPWP) and liquefaction characteristic of soils under seismic loading have long been topics of interest and ongoing discussion. Based on the structural state exhibited in the liquefaction process, the mechanical property of saturated coral sand is divided into solid, pseudo-fluid, and liquid phases. New indices, zeta q (generalized deviator strain evolution) and zeta(y)q (generalized deviator strain evolution rate), are proposed to evaluate the evolution and evolution rate of complex deformation. In the solid phase, the saturated coral sand primarily exhibits the properties of a continuous solid medium, the peak EPWP ratio (rup) shows a power correlation with generalized deviator strain evolution amplitude (zeta qa). While in the pseudo-fluid phase, the saturated coral sand primarily exhibits mechanical behavior characteristic similar to that of a fluid, and the rup shows a significant arctangent function relationship with generalized deviator strain evolution rate amplitude (zeta(y)qa). The correlation of rup with zeta qa and zeta' qaduring liquefaction is significantly affected by loading conditions (cyclic stress ratio, CSR, loading direction angle, alpha sigma, and loading frequency, f). To quantify the impact of these loading conditions on the generation of rup in different phases, unified indicators delta S (for the solid phase) and delta L (for the pseudo-fluid phase) are defined. Eventually, An EPWP model based on mechanical property exhibited in different phases is developed, which has normalized the effects of loading conditions. It provides a comprehensive framework to predict the rup of saturated coral sand under complex geological activities, and this model facilitates the understanding and simulation of the mechanical properties and behavior of saturated coral sand during the liquefaction process.

期刊论文 2025-07-01 DOI: 10.1016/j.enggeo.2025.108130 ISSN: 0013-7952

Evaluating the stability of coral islands and reefs in dynamic marine environments, such as waves, tsunamis, storm surges, and earthquakes, is a critical scientific issue in the field of marine geotechnical engineering. Nansha coral sand was used as the study object, and stress-controlled drained and undrained cyclic-loading tests were conducted. The undrained excess pore-water pressure and the drained cumulative volumetric strain of saturated coral sand were determined at various non-plastic fine contents (FC), relative density (D-r), and cyclic stress ratio (CSR). The results indicated that cumulative volumetric strain (epsilon(vp)) developed in coral sand via two modes: cyclic stabilisation and cyclic creep. Analyses revealed that when the potential damage coefficient (DP) x CSR 0.05, epsilon(vp) transitioned into the cyclic creep mode. Utilising cumulative dissipation energy as a linking factor showed an arctangent function relationship between the excess pore water pressure ratio (R-u) and epsilon(vp) values of saturated coral sand with different FC, D-r, and CSR. This relationship was applicable to both stress- and strain-controlled cyclic-loading tests. Parameters m and n of the R-u-epsilon(vp) function model increased with an increasing CSR. Additionally, an increase in the D-r or FC resulted in a decrease in m and an increase in n. Multiple regression analysis further revealed that model parameters corrected for compactness and cyclic stress levels exhibited distinct trends as the void ratio (e) increased. Specifically, CSR alpha x m(D)(R) decreased, and CSR1-alpha x n(D)(R) increased. Both parameters displayed a single power function relationship with e. Based on these findings, a coupled incremental model for the cyclic pore pressure and volumetric strain of saturated coral sand, based on energy conversion, was developed.

期刊论文 2025-07-01 DOI: 10.1016/j.apor.2025.104631 ISSN: 0141-1187

As a new type of granular backfill material, calcareous sand is widely used in the construction of marine transportation infrastructure. And they are subjected to complex irregular long-term dynamic loading such as that from waves, traffic and even earthquakes. In this paper, 22 groups of undrained cyclic shear tests were performed with calcareous sand under various cyclic stress ratios and cyclic stress paths. The influence mechanism of stress path on the cyclic shear behavior of calcareous sand was investigated. The results show that the ultimate residual pore pressure at critical state was not affected by cyclic stress ratios and paths. But the cyclic shear behaviors of calcareous sand including failure pore water pressure and long-term deformation were changed significantly. Axial load plays a dominant role in each stress path. A stress path parameter omega was proposed to characterize the vertical shaking impact of cyclic stress paths with different initial orientation of the sigma 1 axis to vertical alpha sigma 0. And a power function of omega was used to describe the involvement level of soil skeleton in anti-liquefaction. This parameter performs well in representing cyclic stress paths with different orientation to the vertical. A series of formulas were proposed to predict the failure residual pore pressure and the long-term cumulative deformation behavior of calcareous sand. More accurate shakedown discriminant boundaries suitable for almost unbroken calcareous sand were proposed.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04565 ISSN: 2214-5095

Soil creep is a slow type of mass movement that, despite its low velocity, can significantly influence slope stability and landscape evolution over time. Understanding its mechanisms and spatial variability is essential for assessing slope stability. However, obtaining high-quality long-term data on creep activity remains a challenge. Dendrogeomorphic methods offer a promising approach to reconstruct past creep movements, but their application to shallow creep processes still requires further refinement. Therefore, this research undertakes a dendrogeomorphic analysis of shallow creep movements on flysch rock slopes, utilizing tree-ring eccentricity as an indicator of this geomorphic process. A total of 136 increment cores from 68 Norway spruce (Picea abies (L.) H. Karst.) trees were analysed, revealing the spatio-temporal dynamics of shallow creep and its relationship with slope morphometry and weathering mantle thickness. The eccentricity values were spatially interpolated to visualize the evolution of creep activity over decades, which showed its significant spatial variability. Statistical analyses, including Pearson's and Spearman's correlation coefficients, were employed to examine the relationships between tree-ring eccentricity and various environmental factors. Results indicated that tree age influences the sensitivity to creep signals, with older trees showing increased eccentricity, suggesting a heightened response to creep movements. The study also explored the impact of precipitation on creep activity, identifying a weak, non-significant positive relationship. This comprehensive analysis enhances the understanding of shallow creep mechanisms and contributes to the broader field of dendrogeomorphology.

期刊论文 2025-06-30 DOI: 10.1016/j.catena.2025.108953 ISSN: 0341-8162

Ground subsidence is a common urban geological hazard in several regions worldwide. The settlement of loess fill foundations exhibits more complex subsidence issues under the coupled effects of geomechanical and seepage-driven processes. This study selected 21 ascending Sentinel-1 A radar images from April 2023 to October 2024 to monitor the loess fill foundation in Shaanxi, China. To minimize errors caused by the orbital phase and residual flat-earth phase, this research combined PS-InSAR technology with the three-threshold method to improve the SBAS-InSAR processing workflow, thereby exploring time-series deformation of the loess fill foundation. Compared with conventional SBAS-InSAR technology, the improved SBAS-InSAR technique provided more consistent deformation time-series results with leveling data, effectively capturing the deformation characteristics of the fill foundation. Additionally, geographic information system (GIS) spatial analysis techniques and statistical methods were employed to analyze the overall characteristics and spatiotemporal evolution of the ground surface deformation in the study area. On the other hand, the major drivers of the subsidence in the study area were also discussed based on indoor experiments and engineering geological data. The results showed gradual and temporal shifts of the subsidence center toward areas with the maximum fill depths. In addition, two directions of uneven subsidence were observed within the fill foundation study area. The differences in the fill depth and soil properties caused by the building foundation construction were the main factors contributing to the uneven settlement of the foundations. Foundation deformation was also positively and negatively affected by surface water infiltration. This study integrates remote sensing and engineering geological data to provide a scientific basis for accurately monitoring and predicting loess fill foundation settlement. It also offers practical guidance for regional infrastructure development and geological hazard prevention.

期刊论文 2025-06-25 DOI: 10.1016/j.enggeo.2025.108098 ISSN: 0013-7952

Arsenic exposure has been implicated in various malignancies, including head and neck cancers (HNCs). However, the association between arsenic exposure and HNC development remains unclear. This systematic review aimed to assess the relationship between arsenic exposure and the risk of developing HNCs. This study adhered to PRISMA guidelines. A systematic search of PubMed, Embase, Scopus, and Web of Science was conducted from inception to January 2025 to identify relevant studies. Observational studies reporting the association between arsenic and HNCs were included. Two independent reviewers performed study selection, data extraction, and risk of bias assessment using the NIH criteria. A total of 24 studies met the eligibility criteria, including 35,641 cases and 4,631 controls. The mean age of cases was 50.3 years, while controls had a mean age of 57.7 years. Nineteen studies assessed nasopharyngeal/laryngeal cancers, and 13 investigated oral cancers. Environmental/occupational arsenic exposure was reported in 14 studies, while 11 studies measured arsenic levels in biological samples. Geographical differences in exposure outcomes were observed, with significant associations reported in studies from Tunisia, Chile, Brazil, and Taiwan, while studies from the UK, Finland, and a multicenter European study found no significant relationship. Blood, hair, soil, and drinking water arsenic concentrations varied across studies, with inconsistent findings. The findings suggest a potential link between arsenic exposure and HNCs, particularly in regions with high environmental contamination. However, heterogeneity in exposure assessment and study design limits definitive conclusions. Further well-controlled studies are needed to clarify the association and underlying mechanisms.

期刊论文 2025-06-10 DOI: 10.1007/s12011-025-04697-9 ISSN: 0163-4984

Air pollution is a global health issue, and events like forest fires, agricultural burning, dust storms, and fireworks can significantly worsen it. Festivals involving fireworks and wood-log fires, such as Diwali and Holi, are key examples of events that impact local air quality. During Holi, the ritual of Holika involves burning of biomass that releases large amounts of aerosols and other pollutants. To assess the impact of Holika burning, observations were conducted from March 5th to March 18th, 2017. On March 12th, 2017, around 1.8 million kg of wood and biomass were openly burned in about 2250 units of Holika, located in and around the Varanasi city (25.23 N, 82.97 E, similar to 82.20 m amsl). As the Holika burning event began the impact on the Black Carbon (BC), particulate matter 10 & 2.5 (PM10 and PM2.5), sulphur dioxide (SO2), oxides of nitrogen (NOx), ozone (O-3) and carbon monoxide (CO) concentration were observed. Thorough optical investigations have been conducted to better comprehend the radiative effects of aerosols produced due to Holika burning on the environment. The measured AOD at 500 nm values were 0.315 +/- 0.072, 0.392, and 0.329 +/- 0.037, while the BC mass was 7.09 +/- 1.78, 9.95, and 7.18 +/- 0.27 mu g/m(3) for the pre-Holika, Holika, and post-Holika periods. Aerosol radiative forcing at the top of the atmosphere (ARF-TOA), at the surface (ARF-SUR), and in the atmosphere (ARF-ATM) are 2.46 +/- 4.15, -40.22 +/- 2.35, and 42.68 +/- 4.12 W/m(2) for pre-Holika, 6.34, -53.45, and 59.80 W/m(2) for Holika, and 5.50 +/- 0.97, -47.11 +/- 5.20, and 52.61 +/- 6.17 W/m(2) for post-Holika burning. These intense observation and analysis revealed that Holika burning adversely impacts AQI, BC concentration and effects climate in terms of ARF and heating rate.

期刊论文 2025-06-01 DOI: 10.1016/j.pce.2025.103856 ISSN: 1474-7065

Strongyloides stercoralis (S. stercoralis) is a soil-transmitted nematode that is endemic to tropical and subtropical regions. S. stercoralis has the ability to cause autoinfection, potentially leading to a chronic disease that can last for decades or result in severe hyperinfection especially in individuals who are taking corticosteroids or other immunosuppressive medications. Here, we report the case of a patient presenting a two-week history of symptoms including cough, fatigue, weight loss, pruritus, and rash. Due to a significant increase in the percentage of eosinophils, the patient was referred to the hematology clinic. The patient underwent a comprehensive evaluation that included an autoimmune panel, genetic testing, and imaging methods. The results of these investigations were found to be normal. The upper gastrointestinal system endoscopy revealed eosinophilic duodenitis and corticosteroid treatment was initiated. The commencement of corticosteroid therapy resulted in a worsening of the patient's symptoms. In the repeated endoscopy of the upper gastrointestinal tract, the presence of S. stercoralis larvae was observed between the crypts. Subsequently, stool tests for S. stercoralis diagnosis were also found to be positive. The patient was at risk of developing a hyperinfection syndrome. Corticosteroids are commonly used to reduce inflammation and manage symptoms associated with eosinophilic disorders. The immunosuppressive effects of corticosteroids are known to precipitate S. stercoralis hyperinfection syndrome, which can result in significant morbidity and mortality. This case highlights the importance of maintaining a high index of suspicion for S. stercoralis in patients undergoing immunosuppressive therapy, particularly when presenting with unexplained eosinophilia.

期刊论文 2025-06-01 DOI: 10.1016/j.parint.2024.103024 ISSN: 1383-5769
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共138条,14页