共检索到 1190

Climate warming has impacted the sustainability of freshwater supply in the global water tower unit (WTU) zone. The rainfall infiltration process, a key component of WTUs supply, is affected by freeze-thaw cycles, yet it remains uncertain whether it has undergone corresponding changes. We propose a temperature-mediated infiltration model considering changes in soil water holding, water potential, and hydraulic conductivity due to varying degrees of freezing under negative temperature. Using this model, we calculate the infiltration of 78 WTUs globally from 1980 to 2023. Our results indicate that global WTUs have a multi-year average infiltration of 26 similar to 2359 mm/year. Notably, WTUs in the key latitudinal zone (24 degrees S-42 degrees N) contribute 54 % of the total infiltration volume, showing expanding differences in infiltration characteristics compared to other regions. While rainfall primarily influences infiltration and infiltration capacity, soil temperature and initial soil water content also significantly impact these characteristics. Enhanced infiltration capacity promotes vegetation growth, though the relationship is not linear. Variations in infiltration characteristics threaten the water resource buffering and the stability of downstream living ecological water supply of WTUs. This study provides crucial references for the integrated management of water resources and ecological conservation amid changing infiltration characteristics.

期刊论文 2026-02-01 DOI: 10.1016/j.jhydrol.2025.134712 ISSN: 0022-1694

Both freeze-thaw cycles and vegetation cover changes significantly influence slope runoff and sediment yield in permafrost regions. Nevertheless, their synergistic mechanisms remain inadequately quantified and poorly understood. Through simulated rainfall experiments conducted on slopes in the source region of the Yangtze River, this study investigated the impacts of vegetation cover variation combined with soil freeze-thaw processes on runoff and sediment yield from typical alpine meadows and alpine steppes. The results indicate that: (1) The three factors of vegetation type and coverage, as well as rainfall intensity, jointly shape the relationship between precipitation runoff and sediment. Alpine meadows showed stronger erosion resistance than alpine steppes. (2) The freeze-thaw process of soil dominated the runoff and sediment generation: Runoff volume across varying vegetation coverage followed the order: autumn freezing period > spring thawing period > summer thawed period. However, sediment yield was highest during the spring thawing period, followed by the autumn freezing period and summer thawed period. (3) For higher vegetation coverage, freeze-thaw effects had a greater impact on runoff than on sediment yield; on the contrary, under low-coverage vegetation, the freeze-thaw process influenced sediment yield more than runoff; These findings provide theoretical guidance for achieving integrated soil erosion regulation goals in alpine grassland ecosystems within the Qinghai-Tibet Plateau under climate change.

期刊论文 2026-01-19 DOI: 10.1002/hyp.70407 ISSN: 0885-6087

This study assesses the stability of the Bei'an-Hei'he Highway (BHH), located near the southern limit of latitudinal permafrost in the Xiao Xing'anling Mountains, Northeast China, where permafrost degradation is intensifying under combined climatic and anthropogenic influences. Freeze-thaw-induced ground deformation and related periglacial hazards remain poorly quantified, limiting regional infrastructure resilience. We developed an integrated framework that fuses multi-source InSAR (ALOS, Sentinel-1, ALOS-2), unmanned aerial vehicle (UAV) photogrammetry, electrical resistivity tomography (ERT), and theoretical modeling to characterize cumulative deformation, evaluate present stability, and project future dynamics. Results reveal long-term deformation rates from -35 to +40 mm/yr within a 1-km buffer on each side of the BHH, with seasonal amplitudes up to 11 mm. Sentinel-1, with its 12-day revisit cycle, demonstrated superior capability for monitoring the Xing'an permafrost. Deformation patterns were primarily controlled by air temperature, while precipitation and the topographic wetness index enhanced spatial heterogeneity through thermo-hydrological coupling. Wavelet analysis identified a 334-day deformation cycle, lagging climate forcing by similar to 107 days due to the insulating effects of peat. Early-warning analysis classified 4.99 % of the highway length as high-risk (subsidence 10.91 mm/yr). The InSAR-based landslide prediction model achieved high accuracy (Area Under the Receiver Operating Characteristic (ROC) Curve, or AUC = 0.9486), validated through field surveys of subsidence, cracking, and slow-moving failures. The proposed 'past-present-future' framework demonstrates the potential of multi-sensor integration for permafrost monitoring and provides a transferable approach for assessing infrastructure stability in cold regions.

期刊论文 2026-01-15 DOI: 10.1016/j.rse.2025.115143 ISSN: 0034-4257

The High Arctic deserts of remote northern Greenland are expected to become warmer and wetter due to climate change. Precipitation changes will increase fluctuations in surface soil salinity, and the same happens for thawed permafrost soil where stable salt concentrations are replaced with fluctuating salinity during annual freeze-thaw cycles. Both have unknown effects on the microbial communities and their emissions of microbial volatile organic compounds (MVOCs). These compounds are produced from various pathways mainly as secondary metabolites and have ecological and climatic implications when released into the environment and the atmosphere. Thus, it is important to explore the effects of environmental changes, such as changes in salinity, on soil microbial communities and their MVOC emissions. Here, we characterize the MVOC production of three novel bacterial isolates from northern Greenland throughout their growth period under low, moderate, and high salt concentrations. We demonstrate that salinity significantly alters both the quantity and composition of MVOCs emitted by all three strains, including changes in the emissions of sulphur- and nitrogen-containing compounds, potentially leading to ecosystem nutrient loss. The observed changes in MVOC profiles suggest that changes in soil salinity due to climate change could alter microbial metabolism and MVOC emissions, with potential implications for Arctic nutrient cycling and atmospheric chemistry. Novel Arctic bacterial isolates were found to produce diverse microbial volatile organic compounds, including sulphur- and nitrogen-containing gases, with emissions strongly shaped by changing soil salinity

期刊论文 2026-01-01 DOI: 10.1093/femsec/fiaf125 ISSN: 0168-6496

The depth of the soil freezing front serves as an integrated indicator of land-atmosphere interactions during the freezing period and plays a critical role in regulating the hydrological cycle, ecological processes, and regional climate on the Qingzang Plateau (QP). While previous studies have primarily focused on interannual variations in the annual maximum freezing depth, limited attention has been paid to the spatiotemporal dynamics of the soil freezing front throughout the freezing season. In this study, we simulated the spatiotemporal variations of the soil freezing front on the QP during the freezing period using the optimal model selected from three machine learning algorithms: Random Forest (RF), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The results demonstrated that RF outperforms MLP and SVM in accurately simulating the depth of the soil freezing front (R2 = 0.81, RMSE = 28.09 cm, MAE = 18.02 cm). Spatially, the soil freezing front during the freezing period was deeper in the west and north and shallower in the east and south. From 1983 to 2019, both permafrost and seasonally frozen ground regions across the QP exhibited statistically significant declines in soil freezing front depth. From October to November, freezing depth decreases faster in permafrost than in seasonally frozen ground, whereas from December to January it decreases faster in seasonally frozen ground than in permafrost. A comparison between the sub-periods 1983-2000 and 2001-2019 reveals a marked acceleration in the reduction of freezing depth. Additionally, the influence of air temperature on the freezing front is modulated by its depth. The elevation effect is weak in October, strengthens to a predominantly negative influence in November-December, and becomes nonlinear in January, with the strongest negative impact at mid-high elevations and a weaker effect at the highest elevations.

期刊论文 2025-12-11 DOI: 10.1007/s00382-025-07989-x ISSN: 0930-7575

Central and Eastern European geography, shaped by its entanglement of natural and social sciences, provides a distinctive lens for rethinking the unity of the discipline. Its historical and institutional hybridity makes the region particularly well positioned to foster integrative geographical perspectives. The objective of this study was to evaluate the present, post-transitional state of the discipline in Central and Eastern Europe (CEE), to identify its future trajectory and to uncover the significant role of CEE geography in addressing global environmental, social and economic challenges. To facilitate this process, four significant geographical topics have been identified as potentially providing a conducive environment for the partial reintegration of geography. The aforementioned themes encompass a range of topics, including migrations, the green transition, anthropogenic climate change, global tipping points, wetland disturbance, peatland carbon sequestration and cryosphere degradation. Furthermore, we have sought to assess the perspective and significance of geographical unity in addressing global crises that impact human life on Earth. This analysis has enabled the identification of critical issues that necessitate integrated approaches. The necessity for enhanced collaboration between physical and human geography, as well as between nature studies and social and economic explorations, is emphasised. In this regard, it is acknowledged that a more inclusive approach is employed in the field of CEE geography, with contributions from other disciplines such as biology, ecology, physics, sociology and economics being welcomed. These disciplines address processes that span from local to global scales, as well as those that study long-term phenomena, such as history and archaeology. The establishment of robust interdisciplinary networks has the potential to enhance the scientific standing of integrated geography and to strengthen innovative connections between human and physical geography.

期刊论文 2025-12-11 DOI: 10.1002/geo2.70046 ISSN: 2054-4049

Vegetation greening across the Tibetan Plateau, a critical ecological response to climate warming and land-cover change, affects soil hydrothermal regimes, altering soil moisture (SM) and soil temperature (ST) dynamics. However, its effects on SM-ST coupling remain poorly understood. Using integrated field measurements from a vegetation-soil (V-S) network, reanalysis, and physics-based simulations, we quantify responses of SM, ST, and their coupling to vegetation changes across the Upper Brahmaputra (UB) basin, southern Tibetan Plateau. Results show that strong positive SM-ST correlations occur throughout 0-289 cm soil layers across the basin, consistent with the monsoon-driven co-occurrence of rainy and warm seasons. Spatially, SM-ST coupling strength exhibits pronounced spatial heterogeneity, demonstrating strongest coupling in central basin areas with weaker intensities in eastern and western regions. Overall, vegetation greening consistently induces soil warming and drying: as leaf area index (LAI) increases from 20 % to 180 % of its natural levels, SM (0-160 cm) declines by 15 % to 29 % due to enhanced evapotranspiration and root water uptake. Mean ST simultaneously increases by 1.4 +/- 0.9 degrees C. Crucially, sparsely vegetated regions sustain warming (1.4-2.1 degrees C), while densely vegetated areas transition from initial warming to gradual cooling. These findings advance our understanding of soil hydrothermal dynamics and their broader environmental impacts, improving climate model parameterizations and informing sustainable land management strategies in high-altitude ecosystems.

期刊论文 2025-12-01 DOI: 10.1016/j.catena.2025.109455 ISSN: 0341-8162

Global warming results in more field soil suffering freeze-thaw cycles (FTCs). The environmental risk of microplastics-recognized as a global emerging contaminant-in soils undergoing FTCs remains unclear. In this study, the combined effects of FTCs and poly(butylene adipate-co-terephthalate) (PBAT) microplastics on microbial degradation of atrazine in Mollisols were investigated. Freeze-thaw cycles, rather than microplastics, significantly inhibited the biodegradation of atrazine in soil, with average inhibition ratios of 33.69% and 4.99% for FTCs and microplastics, respectively. Thawing temperature was the main factor driving the changes in soil microbial community structures and the degradation of atrazine. The degradable microplastics with an amendment level of 0.2% had different and limited effects on the dissipation of atrazine under different modes of FTCs. Among the four modes, microplastics only showed a trend toward promoting atrazine degradation under high-frequency and high-thawing-temperature FTCs. Across all modes, microplastics altered microbial interactions and ecological niches that included affecting specific bacterial abundance, module keystone species, microbial network complexity, and functional genes in soil. There's no synergistic effect between microplastics and FTCs on the degradation of atrazine in soil within a short-term period. This study provides critical insights into the ecological effects of the new biodegradable mulch film-derived microplastics in soil under FTCs.

期刊论文 2025-12-01 DOI: 10.1016/j.eehl.2025.100196

Permafrost is undergoing widespread degradation affected by climate change and anthropogenic factors, leading to seasonal freezing and thawing exhibiting interannual, and fluctuating differences, thereby impacting the stability of local hydrological processes, ecosystems, and infrastructure. To capture this seasonal deformation, scholars have proposed various InSAR permafrost deformation models. However, due to spatial-temporal filtering smoothing high-frequency deformation and the presence of approximate assumptions in permafrost models, such differences are often difficult to accurately capture. Therefore, this paper applies an InSAR permafrost monitoring method based on moving average models and annual variations to detect freezing and thawing deformation in the Russian Novaya Zemlya region from 2017 to 2021 using Sentinel-1 data. Most of the study area's deformation rates remained between 10 and 10 mm/yr, while in key oil extraction areas, they reached -20 mm/yr. Seasonal deformation amplitudes were relatively stable in urban areas, but reached 90 mm in regions with extensive development of thermokarst lakes, showing a significant increasing trend. To validate the accuracy of the new method in capturing seasonal deformations, we used seasonal deformations obtained from different methods to retrieval the Active Layer Thickness (ALT), and compared them with field ALT measurement data. The results showed that the new method had a smaller RMSE and improved accuracy by 5% and 30% in two different ALT observation areas, respectively, compared to previous methods. Additionally, by combining the spatial characteristics of seasonal deformation amplitudes and ALT, we analyzed the impact of impermeable surfaces, confirming that human-induced surface hardening alters the feedback mechanism of perennial frozen soil to climate.

期刊论文 2025-12-01 DOI: 10.6038/cjg2024S0285 ISSN: 0001-5733

The Third Pole region, encompassing the vast Himalayan and Tibetan Plateau, is undergoing rapid cryosphere and ecological transformations. This review synthesizes findings from 93 peer-reviewed studies (2000-2024) to evaluate the interactions between glacier retreat, permafrost degradation, and material cycling (carbon, methane, and nitrogen). Mean air temperature has increased by 0.3-0.4 degrees C per decade, while glaciers have lost nearly 36% of their area since the 1990s. Permafrost active layer thickness has deepened by more than 50%, releasing carbon dioxide (CO2), and methane (CH4) previously locked in frozen soils into the atmosphere and water systems. Methane fluxes from wetlands, lakes, and hydrates amplify warming feedback, while nitrogen deposition and fertilizer inputs alter ecosystem nutrient cycling and elevate nitrous oxide (N2O) risk. These processes intensify feedback loops that accelerate regional and global climate change. The findings highlight the Third Pole's role as both a critical water tower for Asia and a major contributor to global greenhouse gas budgets under warming scenarios. Effective policy responses require black carbon mitigation, GLOF early warning systems, permafrost-resilient infrastructure, sustainable nitrogen management, and regional data-sharing platforms. Future research should prioritize long-term monitoring, interdisciplinary flux measurements, and integrative modeling to better capture cryosphere-hydrosphere-biosphere-atmosphere interactions. The stability of the Third Pole is a must for global climate resilience.

期刊论文 2025-12-01 DOI: 10.1139/er-2025-0029 ISSN: 1208-6053
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共1190条,119页