共检索到 283

This research explores the stabilization of clay soil through the application of geopolymer binder derived from silicomanganese slag (SiMnS) and activated by sodium hydroxide (NaOH). This research aims to evaluate the effects of key parameters, including the percentage of slag, the activator-to-stabilizer ratio, and curing conditions (time and temperature), on the mechanical properties of the stabilized soil. Unconfined compressive strength (UCS) tests were conducted to assess improvements in soil strength, while scanning electron microscopy (SEM) was employed to analyze the microstructural changes and stabilization mechanisms. The results demonstrated that clay soil stabilized with SiMnS-based geopolymers exhibited significant strength enhancement. Specifically, the sample stabilized with 20% SiMnS and an activator-to-slag ratio of 1.6, cured at room temperature for 90 days, achieved a UCS of 27.03 kg & frasl;cm2. The uniaxial strength was found to be positively correlated with the SiMnS content, activator ratio, curing time, and temperature. Additionally, the strain at failure remained below 1.5% for all samples, indicating a marked improvement in soil stiffness. SEM analysis revealed that geopolymerization led to the formation of a dense matrix, enhancing soil particle bonding and overall durability. These results emphasize the potential of SiMnS-based geopolymers as a sustainable and effective soil stabilizer for geotechnical applications.

期刊论文 2025-11-01 DOI: 10.5829/ije.2025.38.11b.20 ISSN: 1025-2495

Abandoned farmlands are increasing due to socio-economic changes and land marginalization, and they require sustainable land management practices. Biocrusts are a common cover on the topsoil of abandoned farmlands and play an important role in improving soil stability and erosion resistance. The critical functions of biocrusts are known to mostly rely on their biofilaments and extracellular polymeric substances (EPS), but how these components act at microscopic scale is still unknown, while rheological methods are able to provide new insights into biocrust microstructural stability at particle scale. Here, bare soil and two representative types of biocrusts (cyanobacterial and moss crusts) developed on sandy (Ustipsamments) and sandy loam (Haplustepts) soils in abandoned farmlands in the northern Chinese Loess Plateau were collected at a sampling depth of 2 cm. Changes in the rheological properties of the biocrusts were analyzed with respect to their biofilament network and EPS contents to provide possible explanations. The rheological results showed that compared with bare soil, storage and loss moduli were decreased by the biocrusts on sandy soil, but they were increased by the biocrusts on sandy loam soil. Other rheological parameters tau max, gamma L, gamma YP, and Iz of biocrusts on both soils were significantly higher than those of bare soil, showing higher viscoelasticity. And the moss crusts had about 10 times higher rheological property values than the cyanobacterial crusts. Analysis from SEM images showed that the moss crusts had higher biofilament network parameters than the cyanobacterial crusts, including nodes, crosslink density, branches, branching ratio and mesh index, and biofilament density, indicating that the biofilament network structure in the moss crusts was more compact and complex in contrast to the cyanobacterial crusts. Additionally, EPS content of the moss crusts was higher than that of the cyanobacterial crusts on both soils. Overall, the crosslink density, biofilament density, and EPS content of the biocrusts were significantly and positively correlated with their gamma YP and Iz. The interaction between crosslink density and biofilament density contributed 73.2 % of gamma YP, and that between crosslink density and EPS content contributed 84.0 % of Iz. Our findings highlight the biocrusts-induced changes of abandoned farmland soil rheological properties in drylands, and the importance of biocrust biofilament network and EPS in maintaining abandoned farmland soil microstructural stability to resist soil water/wind erosion and degradation, providing a new perspective for sustainable management of abandoned farmlands.

期刊论文 2025-11-01 DOI: 10.1016/j.still.2025.106651 ISSN: 0167-1987

Lunar soil, as an in-situ resource, holds significant potential for constructing bases and habitats on the Moon. However, such constructions face challenges including limited mechanical strength and extreme temperature fluctuations ranging from -170 degrees C to +133 degrees C between lunar day and night. In this study, we developed a 3D-printed geopolymer derived from lunar regolith simulant with an optimized zig-zag structure, exhibiting exceptional mechanical performance and thermal stability. The designed structure achieved remarkable damage tolerance, with a compressive strength exceeding 12.6 MPa at similar to 80 vol% porosity and a fracture strain of 3.8 %. Finite element method (FEM) simulations revealed that the triangular frame and wavy interlayers enhanced both stiffness and toughness. Additionally, by incorporating strategically placed holes and extending the thermal diffusion path, we significantly improved the thermal insulation of the structure, achieving an ultralow thermal conductivity of 0.24 W/(m K). Furthermore, an iron-free geopolymer coating reduced overheating under sunlight by 51.5 degrees C, underscoring the material's potential for space applications.

期刊论文 2025-09-01 DOI: 10.1016/j.compositesa.2025.108989 ISSN: 1359-835X

This study explores the effectiveness of soft viscoelastic biopolymer inclusions in mitigating cyclic liquefaction in loosely packed sands. This examination employs cyclic direct simple shear testing (CDSS) on loose sand treated with gelatin while varying the gelatin concentration and the cyclic stress ratio (CSR). The test results reveal that the inclusion of soft, viscoelastic gelatin significantly reduces shear strain and excess pore pressure during cyclic shear. Liquefaction potential, defined as the number of cycles to liquefaction (NL) at an excess pore pressure ratio (ru = Delta u/sigma ' vo) of 0.7, is substantially improved in gelatin-treated sands compared to gelatin-free sands. This improvement in liquefaction resistance is more pronounced as the inclusion stiffness increases. Furthermore, the viscoelastic pore-filling inclusion helps maintain skeletal stiffness during cyclic shearing, resulting in a higher shear modulus in gelatin-treated sand in both small and large-strain regimes. At a grain scale, pore-filling viscoelastic biopolymers provide structural support to the skeletal frame of a loosely packed sand. This pore filler mitigates volume contraction and helps maintain the effective stress of the soil structure, thereby reducing liquefaction potential under cyclic shearing. These findings underscore the potential of viscoelastic biopolymers as bio-grout agents to reduce liquefaction risk in loose sands.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109498 ISSN: 0267-7261

This study developed a novel geopolymer (RM-SGP) using industrial solid wastes red mud and slag activated by sodium silicate, aiming to remediate composite heavy metal contaminated soil. The effects of aluminosilicate component dosage, alkali equivalent, and heavy metal concentration on the unconfined compressive strength (UCS), toxicity leaching characteristics, resistivity, pH, and electrical conductivity (EC) of RM-SGP solidified composite heavy metal contaminated soil were systematically investigated. Additionally, the chemical composition and microstructural characteristics of solidified soil were analyzed using XRD, FTIR, SEM, and NMR tests to elucidate the solidification mechanisms. The results demonstrated that RM-SGP exhibited excellent solidification efficacy for composite heavy metal contaminated soil. Optimal performance occurred at 15 % aluminosilicate component dosage and 16 % alkali equivalent, achieving UCS >350 kPa and compliant heavy metal leaching (excluding Cd in high-concentration groups). Acid/alkaline leaching tests revealed distinct metal behaviors: Cu/Cd decreased progressively, while Pb initially declined then rebounded. Microstructural analysis indicated that RM-SGP generated abundant hydration products (e.g., C-A-S-H, N-A-S-H gels), which acted as cementitious substances wrapping soil particles and filling and connecting pores, thereby increasing the soil's compactness and improving the solidification effect. Furthermore, heavy metal ions were solidified through adsorption, encapsulation, precipitation, ion exchange, and covalent bond et al., transforming their active states into less bioavailable forms, proving novel insights into the remediation of composite heavy metal contaminated soils and the resource utilization of industrial solid wastes.

期刊论文 2025-08-08 DOI: 10.1016/j.conbuildmat.2025.141996 ISSN: 0950-0618

Conventional in-situ light non-aqueous phase liquid (LNAPL) remediation techniques often face challenges of high costs and limited efficiency, leaving residual hydrocarbons trapped in soil pores. This study investigates the efficiency of an alcohol-in-biopolymer emulsion for enhancing diesel-contaminated soil remediation. The emulsion, formulated with xanthan gum biopolymer, sodium dodecyl sulfate surfactant, and the oil-soluble alcohol 1-pentanol, was evaluated through rheological tests, interfacial tension measurements, and onedimensional sand-column experiments under direct injection and post-waterflooding scenarios. The emulsion exhibited non-Newtonian shear-thinning behavior with high viscosity, ensuring stable propagation and efficient delivery of 1-pentanol to mobilize trapped diesel ganglia. It achieved 100 % diesel recovery within 1.2 PV during direct injection, outperforming shear-thinning polymer-only and polymer-surfactant solutions, which achieved recovery factors of 83.4-92.9 %. Post-waterflooding experiments also demonstrated 100 % diesel recovery within 1.3 PV, regardless of initial diesel saturation. Key mechanisms include reduced interfacial tension, diesel swelling and mobilization induced by 1-pentanol, and uniform displacement facilitated by the emulsion's viscosity. Additionally, the emulsion required lower injection pressures compared to more viscous alternatives, enhancing its injectability into the soil and reducing energy demands. These findings highlight the emulsion's potential to overcome conventional remediation limitations, offering a highly effective and sustainable solution for diesel-contaminated soils and groundwater.

期刊论文 2025-07-15 DOI: 10.1016/j.jhazmat.2025.138183 ISSN: 0304-3894

The paper investigates the effect of curing conditions on the properties of laterite soil-based geopolymer cement. In the experimental testing, calcined laterite soil was used as a solid precursor in the preparation of geopolymer cement. Standard size prismatic geopolymer specimens were prepared and subjected to four curing methods, including open air curing and courses of combined open-air curing and oven curing. The prisms were tested at 3, 7, and 28 days to determine the effect of curing methods on the flexural and compressive strengths. The crushed prisms were further pulverised and analysed to investigate the microstructure, elemental composition, mineralogical phases, chemical bonding, and thermal behaviour. The findings showed that the highest strength at 28 days was obtained with the air curing method. However, the curing methods involving an oven curing course resulted in the highest early strength at 3(early strength) and 7 days.

期刊论文 2025-07-11 DOI: 10.1016/j.conbuildmat.2025.141768 ISSN: 0950-0618

The socio-economic growth of a nation depends heavily on the availability of adequate infrastructure, which relies on essential materials like river sand (RS) and cement. However, the rising demand for RS, combined with its excessive extraction causing ecological damage, and its increasing cost, has raised significant concerns. At the same time, the production of cement contributes significantly to environmental damage, especially through CO2 emissions. In this scenario geopolymer technology has emerged as a sustainable alternative to cement, offering environmental benefits and reducing the carbon footprint of construction materials. This study investigates the impact of replacing RS with copper slag (CS) and laterite soil (LS) in geopolymer mortar (GM) on key properties such as setting time, flowability, compressive strength, and microstructure. The results showed that as LS content increased, setting time and flowability decreased considerably, while increasing CS content caused a reduction in these values. Unlike the other observed parameters, the compressive strength values showed no distinct upward or downward trend. Moreover, the microstructural analysis, including SEM, EDS, XRD, FTIR, TGA and BET, provided valuable insights to support the observed results across various mix designs. Overall, the findings highlight that optimised binary blends of CS, LS and RS not only improved the compressive strength but also enhanced the microstructural characteristics of geopolymer mortar, reinforcing their potential as sustainable and high-performance alternatives to conventional fine aggregates.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04753 ISSN: 2214-5095

Geopolymer concrete is a promising alternative to traditional cement due to its lower carbon footprint and enhanced mechanical properties. While carbonatogenic bacteria have been widely studied in Portland cement, their role in geopolymers remains underexplored, particularly in noncalcium precipitation mechanisms. This study screened limestone quarry samples using 16S amplicon sequencing to identify potential carbonatogenic bacteria. Following isolation and precipitation analysis, Lysinibacillus fusiformis JH2 was selected and incorporated into fly ash-bottom ash-based geopolymer paste. XRD and SEM analysis revealed that microbial carbonation led to the formation of aragonite, natrite, and brucite, refining pore structures, enhancing durability, and increasing compressive strength. Incorporating JH2 endospores significantly improved early strength, achieving 17.5 MPa within 7 days, meeting Indonesian structural standards, and increasing strength by up to 166 %. Notably, bacteria remained viable and retained their ability to form endospores, opening possibilities for endospore storage in artificial aggregates for selfhealing and bio-enhanced construction materials. These findings also show a potentially novel microbial pathway for non-calcium precipitation, contributing to the faster, more sustainable enhancement of geopolymer concrete for industrial applications.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04727 ISSN: 2214-5095

Deep soil mixing (DSM) is a widely used ground improvement method to enhance the properties of soft soils by blending them with cementitious materials to reduce settlement and form a load-bearing column within the soil. However, using cement as a binding material significantly contributes to global warming and climatic change. Moreover, there is a need to understand the dynamic behavior of the DSM-stabilized soil under traffic loading conditions. In order to address both of the difficulties, a set of 1-g physical model tests have been conducted to examine the behavior of a single geopolymer-stabilized soil column (GPSC) as a DSM column in soft soil ground treatment under static and cyclic loading. Static loading model tests were performed on the end-bearing (l/h = 1) GPSC stabilized ground with Ar of 9 %, 16 %, 25 %, and 36 % and floating GPSC stabilized ground with l/h ratio of 0.35, 0.5, and 0.75 to understand the load settlement behavior of the model ground. Under cyclic loading, the effect of Ar in end-bearing conditions and cyclic loading amplitude with different CSR was performed. Earth pressure cells were used to measure the stress distribution in the GPSC and the surrounding soil in terms of stress concentration ratio, and pore pressure transducers were used to monitor the excess pore water pressure dissipated in the surrounding soil of the GPSC during static and cyclic loading. The experimental results show that the bearing improvement ratio was 2.28, 3.74, 7.67, and 9.24 for Ar of 9 %, 16 %, 25 %, and 36 %, respectively, and was 1.49, 1.82, and 2.82 for l/h ratios of 0.35, 0.5, and 0.75 respectively. Also, the settlement induced due to cyclic loading was high under the same static and cyclic stress for all the area replacement ratios. Furthermore, the impact of cyclic loading is reduced with an increase in the area replacement ratio. Excess pore water pressure generated from static and cyclic loads was effectively decreased by installing GPSC.

期刊论文 2025-07-01 DOI: 10.1016/j.soildyn.2025.109368 ISSN: 0267-7261
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共283条,29页