Understanding soil organic carbon (SOC) distribution and its environmental controls in permafrost regions is essential for achieving carbon neutrality and mitigating climate change. This study examines the spatial pattern of SOC and its drivers in the Headwater Area of the Yellow River (HAYR), northeastern Qinghai-Xizang Plateau (QXP), a region highly susceptible to permafrost degradation. Field investigations at topsoils of 86 sites over three summers (2021-2023) provided data on SOC, vegetation structure, and soil properties. Moreover, the spatial distribution of key permafrost parameters was simulated: temperature at the top of permafrost (TTOP), active layer thickness (ALT), and maximum seasonal freezing depth (MSFD) using the TTOP model and Stefan Equation. Results reveal a distinct latitudinal SOC gradient (high south, low north), primarily mediated by vegetation structure, soil properties, and permafrost parameters. Vegetation coverage and above-ground biomass showed positive correlation with SOC, while soil bulk density (SBD) exhibited a negative correlation. Climate warming trends resulted in increased ALT and TTOP. Random Forest analysis identified SBD as the most important predictor of SOC variability, which explains 38.20% of the variance, followed by ALT and vegetation coverage. These findings likely enhance the understanding of carbon storage controls in vulnerable alpine permafrost ecosystems and provide insights to mitigate carbon release under climate change.
Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.
This study highlights the results of a palaeoecological analysis conducted on five permafrost peatlands in the northern tundra subzone along the Barents Sea coast in the European Arctic zone. The depth of the peat cores that were sampled was approximately 2 m. The analysis combined data on the main physical and chemical soil properties, radiocarbon dating, botanical composition, and mass fraction of polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 PAHs in peat organic layers ranged from 140 to 254 ng/g, with an average of 182 ng/g. The peatlands studied were dominated by PAHs with a low molecular weight: naphthalene, phenanthrene, fluoranthene, pyrene, chrysene. The vertical distribution patterns of PAHs along the peat profile in the active layer and permafrost were determined. PAHs migrating down the active layer profile encounter the permafrost barrier and accumulate at the boundary between active layer and permafrost layer. The deep permafrost layers accumulate large amounts of PAHs and PAH derivatives, which are products of lignin conversion during the decomposition of grassy and woody vegetation during the Holocene climate optima. The total toxic equivalency concentration (TEQ) was calculated. Peatlands from the Barents Sea coast have low toxicity for carcinogenic PAHs throughout the profile. TEQ ranged from a minimum of 0.1 ng/g to a maximum of 13.5 ng/g in all peatlands investigated. For further potential use in Arctic/sub-Arctic environmental studies, PAH indicator ratios were estimated. In all investigated sections and peatland horizons, the most characteristic ratios indicate the petrogenic (natural) origin of PAHs.
The Arctic has been warming much faster than the global average, known as Arctic amplification. The active layer is seasonally frozen in winter and thaws in summer. In the 2017 Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign, airborne L- and P- band synthetic aperture radar (SAR) was used to acquire a dataset of active layer thickness (ALT) and vertical soil moisture profile, at 30 m resolution for 51 swaths across the ABoVE domain. Using a thawing degree day (TDD) model, ALT=K root TDD, we estimated ALT along the ABoVE swaths employing the 2-m air temperature from ERA5. The coefficient (K) calibrated has an R2=0.9783. We also obtained an excellent fit between ALT and K root(TDD/theta) where theta is the soil moisture from ERA5 (R2=0.9719). Output based on shared-social economic pathway (SSP) climate scenarios SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 from seven global climate models (GCMs), statistically downscaled to 25-km resolution, was used to project the impacts of climate warming on ALT. Assuming ALT=K root TDD, the projections of UKESM1-0-LL GCM resulted in the largest projected ALT, up to about 0.7 m in 2080s under SSP5-8.5. Given that the mean observed ALT of the study sites is about 0.482 m, this implies that ALT will increase by 0.074 to 0.217 m (15% and 45%) in 2080s. This will have substantial impacts on Arctic infrastructure. The projected settlement Iset (cm) of 1 to 7 cm will also impact the infrastructure, especially by differential settlement due to the high spatial variability of ALT and soil moisture, given at local scale the actual thawing will partly depend on thaw sensitivity of the material and potential thaw strain, which could vary widely from location to location.
Climate change is transforming the ice-free areas of Antarctica, leading to rapid changes in terrestrial ecosystems. These areas represent <0.5% of the continent and coincide with the most anthropogenically pressured sites, where the human footprint is a source of contamination. Simultaneously, these are the locations where permafrost can be found, not being clear what might be the consequences following its degradation regarding trace element remobilisation. This raises the need for a better understanding of the natural geochemical values of Antarctic soils as well as the extent of human impact in the surroundings of scientific research stations. Permafrost thaw in the Western Antarctic Peninsula region and in the McMurdo Dry Valleys is the most likely to contribute to the remobilisation of toxic trace elements, whether as the result of anthropogenic contamination or due to the degradation of massive buried ice and ice-cemented permafrost. Site-specific locations across Antarctica, with abandoned infrastructure, also deserve attention by continuing to be a source of trace elements that later can be released, posing a threat to the environment. This comprehensive summary of trace element concentrations across the continent's soils enables the geographical systematisation of published results for a better comparison of the literature data. This review also includes the used analytical techniques and methods for trace element dissolution, important factors when reporting low concentrations. A new perspective in environmental monitoring is needed to investigate if trace element remobilisation upon permafrost thaw might be a tangible consequence of climate change.
Small modular reactors (SMRs) are an alternative for clean energy solutions in Canada's remote northern communities, owing to their safety, flexibility, and reduced capital requirements. Currently, these communities are heavily reliant on fossil fuels, and the transition to cleaner energy sources, such as SMRs, becomes imperative for Canada to achieve its ambitious net-zero emissions target by 2050. However, applying SMR technology in permafrost regions affected by climate change presents unique challenges. The degradation of permafrost can lead to significant deformations and settlements, which can result in increased maintenance expenses and reduced structural resilience of SMR infrastructure. In this paper, we studied the combined effect of climate nonstationarity in terms of ground surface temperature and heat dissipation from SMR reactor cores for the first time in two distinct locations in Canada's North: Salluit in Quebec and Inuvik in the Northwest Territories. It was shown that these combined effects can make significant changes to the ground thermal conditions within a radius of 15-20 m around the reactor core. The change in the ground thermal conditions poses a threat to the integrity of the permafrost table. The implementation of mitigation strategies is imperative to maintain the structural integrity of the nuclear infrastructure in permafrost regions. The thermal modeling presented in this study paves the way for the development of advanced coupled thermo-hydromechanical models to examine the impact of SMRs and climate nonstationarity on permafrost degradation.
This study examines permafrost thermal regimes and hydrological responses to climate change in the Navarro Valley, Chile's Dry Central Andes, using a decade of ground temperature data (2013-2022) from two rock glaciers-RG1 (3805 m) and RG2 (4047 m)-alongside short-term meltwater conductivity records, meteorological data, and long-term streamflow records. We assess permafrost stability and climatic sensitivity by analyzing thermal offset data (2017-2022) and ground temperature trends. Both sites show sustained warming, but RG1 exhibits accelerated warming (+ 2.84 degrees C/decade), frequent freeze-thaw cycles, and extended thaw periods, indicating a transitional regime. In contrast, RG2 shows fewer freeze-thaw cycles and greater thermal buffering, consistent with cold permafrost. The statistical model overestimated thaw dynamics at RG2, highlighting the importance of field-based data for accurate classification. Hydrological signals at RG1-including cold, mineralized meltwater and rapid ground surface temperature stream coupling-are attributed to thawing and deeper flowpaths. Conductivity data (2014-2015) reveal solute pulses consistent with early melt events and debris interaction. Meanwhile, long-term streamflow trends indicate declining discharge. These findings suggest feedback between permafrost loss and water availability. This study underscores the divergent evolution of adjacent rock glaciers under warming by integrating thermal, hydrological, and climatic data. RG1 shows signs of degradation, while RG2 may act as a temporary refuge. Continued monitoring is essential for managing water security in vulnerable mountain regions like the Dry Andes.Graphical AbstractThis graphical abstract visually summarizes a ten-year monitoring effort of mountain permafrost and glacier hydrology in the Navarro Valley, Dry Andes (32 degrees S), with implications for water security under climate change. The left panel situates the study area within the upper Aconcagua Basin, identifying two instrumented sites within the Tres Gemelos rock glacier complex-RG1 (3805 m) and RG2 (4047 m)-and an automatic weather station. These sites were selected for continuous monitoring of ground temperature and streamflow to assess permafrost behavior in a water-stressed mountain catchment. Moving to the center, the image presents an integrated monitoring framework that links temperature-depth profiles, surface-subsurface thermal dynamics, and discharge records. Key indicators such as freeze-thaw cycle counts and thawed-day metrics are used to classify thermal regimes and detect warming trends. The upper-right panel features a conceptual model that connects permafrost degradation to hydrological responses: RG1, characterized as transitional, shows signs of enhanced shallow flow and seasonal meltwater pulses, while RG2 retains cold, thermally buffered conditions that support greater storage stability. These contrasts are further illustrated by temperature trend graphs, which reveal faster warming at RG1 (+ 2.84 degrees C/decade) compared to RG2 (+ 1.92 degrees C/decade), as well as increased thaw metrics. Below, a long-term streamflow graph (1970-2023) documents declining discharge, visually supported by a field photo of a dry riverbed. The bottom panel summarizes the study's key finding: RG1 and RG2 are evolving along divergent thermal and hydrological trajectories, underscoring the need for high-resolution monitoring to guide water resource planning in an era of warming and drought.
This study conducted load-bearing capacity tests to quantitatively analyze the impact of permafrost degradation on the vertical load-bearing capacity of railway bridge pile foundations. Meanwhile, a prediction model vertical load-bearing capacity for pile foundations considering permafrost degradation was developed and validated through these tests. The findings indicate that the permafrost degradation significantly influences both the failure patterns of the pile foundation and the surrounding soil. With the aggravation of permafrost degradation, damage to the pile foundation and the surrounding soil becomes more pronounced. Furthermore, permafrost degradation aggravates, both the vertical ultimate bearing capacity and maximum side friction resistance of pile foundations exhibit a significant downward trend. Under unfrozen soil conditions, the vertical ultimate bearing capacity of pile foundations is reduced to 20.1 % compared to when the permafrost thickness 160 cm, while the maximum side friction resistance drops to 13.2 %. However, permafrost degradation has minimal impact on the maximum end bearing capacity of pile foundations. Nevertheless, as permafrost degradation aggravates, the proportion of the maximum end bearing capacity attributed to pile foundations increases. Moreover, the rebound rate of pile foundations decreases with decreasing permafrost thickness. Finally, the results confirm that the proposed prediction model can demonstrates a satisfactory level of accuracy in forecasting the impact of permafrost degradation on the vertical load-bearing capacity of pile foundations.
Study area: The Binggou and adjacent Yakou catchments in the northeastern Tibetan Plateau. Study focus: Hillslope flow paths were studied using hydrochemical data of various water types in the spring snowmelt and summer rainfall periods based on hydrochemical tracers and endmember mixing analysis. New hydrological insights for the study region: End-member mixing analysis confirmed the dominance of surface and near-surface runoff during the spring snowmelt. Specifically, the spring Binggou stream water had 61 % surface runoff, 22 % shallow groundwater, and 17 % near-surface runoff. The spring Yakou stream water had 64 % snowmelt, 25.5 % near-surface runoff, and 10.5 % riparian saturated soil water at a depth of 20 cm. The application of end-member mixing analysis failed in the summer rainfall period, and shallow subsurface flow contributed the most to the streamflow (similar to 100 %). The average acid-neutralizing capacity of the spring Yakou stream water was 611 mu eq/L, increasing to 841 mu eq/L in the summer, and for the Binggou stream water, the values were 747 mu eq/L and 1084 mu eq/L, respectively, indicating that the thawed soil layers had a significant buffering effect on stream water chemistry. This study revealed seasonal shifts in flow paths and stream sources, with a transition from surface to subsurface flow influenced by meteorological conditions and the active layer thickness. Future climate change may enhance subsurface flow recharge, leading to less diluted streamflow and stronger water-soil interactions.
The entrance of permafrost tunnels in cold regions is particularly vulnerable to frost damage caused by complex thermal-hydro-mechanical (THM) interactions in unsaturated frozen soils. The effects of temperaturedependent volumetric strain variations across different stratum materials on heat and moisture transport are often neglected in existing THM coupling models. In this study, a novel THM coupled model for unsaturated frozen soil integrating volumetric strain correction is proposed, which addresses bidirectional interactions between thermal-hydraulic processes and mechanical responses. The model was validated through laboratory experiments and subsequently applied to the analysis of the Yuximolegai Tunnel. The results indicate that distinct layered ice-water distribution patterns are formed in shallow permafrost under freeze-thaw cycles, driven by bidirectional freezing and water migration. Critical mechanical responses were observed, including a shift in maximum principal stress from the invert (1.40 MPa, frozen state) to the crown (5.76 MPa, thawed state), and periodic lining displacements (crown > invert > sidewalls). Frost damage risks are further quantified by the spatial-temporal zoning of ice-water content-sensitive regions. These findings advance unsaturated frozen soil modeling and provide theoretical guidance for frost-resistant tunnel design in cold regions.