Observations from 1,047 meteorological stations from September 1, 2006 to August 31, 2015 revealed regional differences in the freezing and thawing processes of seasonally frozen ground (SFG) across China. SFG generally undergoes a one-way freezing process (i.e., top-down), and the stations with a large freeze depth generally experienced long freeze durations. During the thawing process, soil is generally characterized by two-way thawing (i.e., top-down and bottom-up) in the region north of 35 ' N, ' N, especially north of 30 ' N ' N (except in northeastern China). The onset of thawing from the bottom occurs earlier than that from the top at most stations in the two-way thawing region. The stations exhibiting one-way thawing (i.e., bottom-up) were mainly located on the southern edge of eastern China (east of 110 degrees E) degrees E) and in southern part of Xinjiang and southeast part of the Qinghai-Tibet Plateau. The freezing process lasts several days to more than four months longer than the soil thawing process, and this difference tends to be larger in high-latitude and high-altitude regions. All of the sites experienced a discontinuous freeze-thaw process, the station-average duration of which was less than a quarter of that of the continuous freeze-thaw process. Strong associations of soil freeze depth with air temperature (as characterized by the air freezing index and air thawing index) implied a dominant influence of air temperature on the soil freeze-thaw process. During the freezing process, this relationship was partially modulated by snow cover in snowy regions, such as northeast China, northwest China, and the eastern Tibetan Plateau. This paper provides the first overview of regional differences in the freezing and thawing processes of SFG over China, and the findings improve our understanding of the soil freeze-thaw process and provide important information to support research into regional landscapes, ecosystems, and hydrological processes.
Introduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai-Tibetan Plateau, and the freezing-thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December-early February), the early ablation period (mid-February to March), and the later ablation period (March-end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process.
Revegetation is an effective approach for restoring extremely degraded grassland (DG) in the Qinghai-Tibetan Plateau (QTP). However, little is known about its effects on permafrost stability. Our study investigated changes in the characteristics of DG and revegetated grassland (RG) in alpine permafrost regions of the QTP by means of in situ monitoring and sampling. Compared with DG, soil temperature was lower in warm months and slightly higher in cool months both at 2 and 10 cm depths after revegetation, while soil moisture generally decreased. Revegetation advanced the onset and increased the duration of completely frozen stage. The number of freeze-thaw days decreased at 2 cm but increased at 10 cm depth. The freeze-thaw strength weakened at 2 cm depth in spring and autumn, and at 10 cm depth in autumn, but increased at 10 cm depth in spring. The thawing index at the two depths and active layer thickness in RG were also significantly lower than those in DG. Revegetation significantly affected the particle size distribution and stability of soil aggregates by increasing the proportion of large macroaggregates. Thus, revegetation can effectively improve the permafrost stability of degraded grassland in the QTP and enhance the service functions of alpine grassland ecosystems.
The soil freeze/thaw (FT) state has emerged as a critical role in the ecosystem, hydrological, and biogeochemical processes, but obtaining representative soil FT state datasets with a long time sequence, fine spatial resolution, and high accuracy remains challenging. Therefore, we propose a decision-level spatiotemporal data fusion algorithm based on Convolutional Long Short-Term Memory networks (ConvLSTM) to expand the SMAP-enhanced L3 landscape freeze/thaw product (SMAP_E_FT) temporally. In the algorithm, the Freeze/Thaw Earth System Data Record product (ESDR_FT) is sucked in the ConvLSTM and fused with SMAP_E_FT at the decision level. Eight predictor datasets, i.e., soil temperature, snow depth, soil moisture, precipitation, terrain complexity index, area of open water data, latitude and longitude, are used to train the ConvLSTM. Direct validation using six dense observation networks located in the Genhe, Maqu, Naqu, Pali, Saihanba, and Shandian river shows that the fusion product (ConvLSTM_FT) effectively absorbs the high accuracy characteristics of ESDR_FT and expands SMAP_E_FT with an overall average improvement of 2.44% relative to SMAP_E_FT, especially in frozen seasons (averagely improved by 7.03%). The result from indirect validation based on categorical triple collocation also shows that ConvLSTM_FT performs stable regardless of land cover types, climate types, and terrain complexity. The findings, drawn from preliminary analyses on ConvLSTM_FT from 1980 to 2020 over China, suggest that with global warming, most parts of China suffer from different degrees of shortening of the frozen period. Moreover, in the Qinghai-Tibet region, the higher the permafrost thermal stability, the faster the degradation rate.
Permafrost soils in the northern hemisphere are known to harbor large amounts of soil organic matter (SOM). Global climate warming endangers this stable soil organic carbon (SOC) pool by triggering permafrost thaw and deepening the active layer, while at the same time progressing soil formation. But depending, e.g., on ice content or drainage, conditions in the degraded permafrost can range from water-saturated/anoxic to dry/oxic, with concomitant shifts in SOM stabilizing mechanisms. In this field study in Interior Alaska, we investigated two sites featuring degraded permafrost, one water-saturated and the other well-drained, alongside a third site with intact permafrost. Soil aggregate- and density fractions highlighted that permafrost thaw promoted macroaggregate formation, amplified by the incorporation of particulate organic matter, in topsoils of both degradation sites, thus potentially counteracting a decrease in topsoil SOC induced by the permafrost thawing. However, the subsoils were found to store notably less SOC than the intact permafrost in all fractions of both degradation sites. Our investigations revealed up to net 75% smaller SOC storage in the upper 100 cm of degraded permafrost soils as compared to the intact one, predominantly related to the subsoils, while differences between soils of wet and dry degraded landscapes were minor. This study provides evidence that the consideration of different permafrost degradation landscapes and the employment of soil fractionation techniques is a useful combination to investigate soil development and SOM stabilization processes in this sensitive ecosystem.
Simple Summary Microorganisms and their enzymes are crucial to ensuring soil quality, health, and carbon sequestration. Their numerous reactions are essential for biogeochemical cycles. However, a comprehensive review is lacking to summarize the latest findings in agricultural and enzymatic research. Although the relationships between soil enzyme activities and different soil ecosystems, such as arctic and permafrost regions, tropics and subtropics, tundra, steppes, etc., have been intensively investigated, particularly in the context of climate changes, only a few reviews summarize the impact of climate change on soil enzyme activity. This review aims to highlight the main groups of microbial enzymes found in soil (such as alpha-glucosidases and beta-glucosidases, phosphatases, ureases, N-acetyl-glucosaminidases, peptidases, etc.), their role in the global nutrient cycles of carbon, nitrogen, phosphorus, sulfur, carbon sequestration, and the influence of intensive agriculture on microbial enzymatic activity, and the variations in enzyme activity across different climate zones and soil ecosystems. Furthermore, the review will emphasize the importance of microbial enzymes for soil fertility and present both current challenges and future perspectives.Abstract The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.
In the context of global warming, the soil freeze depth (SFD) over the Tibetan Plateau (TP) has undergone significant changes, with a series of profound impacts on the hydrological cycle and ecosystem. The complex terrains and high elevations of the TP pose great challenges in data acquisition, presenting difficulties for studying SFD in this region. This study employs Stefan's solution and downscaled datasets from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate the future SFDs over the TP. The changing trends of the projected SFDs under different Shared Socio-economic Pathways (SSP) scenarios are investigated, and; the responses of SFDs to potential climatic factors, such as temperature and precipitation, are analyzed. The potential impacts of SFD changes on eco-hydrological processes are analyzed based on the relationships between SFDs, the distribution of frozen ground, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Results show that the projected SFDs of the TP are estimated to decrease at rates of 0.100 cm/yr under the SSP126, 0.330 cm/yr under the SSP245, 0.565 cm/yr under the SSP370, and 0.750 cm/yr under the SSP585. Additionally, the SFD decreased at a rate of 0.160 cm/yr during the historical period from 1950 to 2014, which was between the decreasing rates of the SSP126 and SSP245 scenarios. The projected SFDs are negatively correlated with air temperature and precipitation, more significant under the higher emissions scenario. The projected decrease in SFDs will significantly impact eco-hydrological processes. A rapid decrease in SFD may lead to a decline in soil moisture content and have adverse impacts on vegetation growth. This research provides valuable insights into the future changes in SFD on the TP and their impacts on eco-hydrological processes.
A review of the status of research on high mountain soils and their alterations caused by changes in the cryosphere in the European Alps is given. Soils of high mountain environments are not only exposed to atmospheric warming, rising CO2 levels, and changing precipitation patterns but also to climate-driven changes in the cryosphere. The massive reduction of glacier coverage as well as snow cover and (perma) frost extent can affect soils in various ways. We performed a comprehensive literature analysis and considered both the direct impacts (changes in surface coverage or ground thermal conditions) and indirect impacts (changing hydrosphere, lithosphere/geomorphodynamics, or biosphere) of cryosphere changes on soil. All considered studies had a multidisciplinary character: around 34% of the articles covered two spheres (cryosphere, pedosphere), 40% covered three spheres (cryosphere, pedosphere, and an additional sphere), and 26% covered more than three spheres. Most studies focused on initial soil formation in glacier forefields. The impact of changing geomorphodynamics on soils is underrepresented in literature, even though it is one of the major consequences of changes in the cryosphere. We therefore finally discuss possible consequences of changing geomorphodynamics due to changes in the cryosphere for high mountain soils.
Accurate delineation of spatiotemporal variations in ground surface soil freeze and thaw (F/T) states is essential to appraise many geoscience issues, such as the hydrological circulation and land surface-atmosphere feedbacks. Recently, an Improved Dual-index algorithm (DIA) method was proposed by accounting for the influence of soil moisture variations on the discrimination accuracy with passive microwave remote sensing (RS) data products. Compared with the original DIA, the Improved DIA method has proven to be a more practical approach on surface soil F/T states discrimination. However, the method has only been applied and verified in cold regions of high-altitude (e.g., Tibetan Plateau), it's applicability and effectiveness in the cold areas in mid-high latitudes, where the geographic and climatic conditions are quite different, yet remained to be further explored. The present study investigated the feasibility of using AMSR-E (the Advanced Microwave Scanning Radiometer-EOS) and AMSR2 (the second Advance Microwave Scanning Radiometer) passive microwave RS data products to discriminate the F/T states of the ground surface for a long period from 2002 to 2019 by means of the Improved DIA method over a typical mid-high latitude cold region of Northeastern China. Seasonal variation characteristics of soil moisture in mid-high latitude areas were similar with those in high-altitude areas, even though the spatial heterogeneity of soil water content was significant in different regions. Discriminating surface soil F/T states with the Improved DIA method derived overall discriminating accuracy of about 91.6% in the study area, which demonstrated excellent feasibility of the Improved DIA method in mid-high latitude cold regions. The mapping results shown surface soil F/T cycle in Northeastern China responding to climate change was examined from the perspective of regional average, both the proportion of frozen soil area and frozen days showed significant decreasing trends continuously with differed quite spatially. The discriminating accuracy of the Improved DIA method was found to be lower in plain areas with dense populations and large farmland areas compared to mountainous areas when human activities were not taken into consideration, as quantifying human activities can be challenging. The Improved DIA method has been well verified in both high-altitude and high-latitude regions; it has great potential in global scale research.
As the basic units of soil structure, soil aggregate is essential for maintaining soil stability. Intensified freeze-thaw cycles have deeply affected the size distribution and stability of aggregate under global warming. To date, it is still lacking about the effects of freeze-thaw cycles on aggregate in the permafrost regions of the Qinghai-Tibetan Plateau (QTP). Therefore, we investigated the effects of diurnal and seasonal freeze-thaw processes on soil aggregate. Our results showed that the durations of thawing and freezing periods in the 0-10 cm layer were longer than in the 10-20 cm layer, while the opposite results were observed during completely thawed and frozen periods. Freeze-thaw strength was greater in the 0-10 cm layer than that in the 10-20 cm layer. The diurnal freeze-thaw cycles have no significant effect on the size distribution and stability of aggregate. However, 0.25 mm) and reduced aggregate stability. Our study has scientific guidance for evaluating the effects of freeze-thaw cycles on soil steucture and provides a theoretical basis for further exploration on soil and water conservation in the permafrost regions of the QTP.