共检索到 139

The critical role of light-absorbing aerosol black carbon (BC) in modifying the Earth's atmosphere and climate system warrants detailed characterization of its microphysical properties. The present study examines the BC microphysical properties (size distributions and mixing state) and their impact on the light-absorption characteristics over a semi-urban tropical coastal location in Southern Peninsular India. The measurements of refractory BC (rBC) properties, carried out using the single particle soot photometer during 2018-2021, covering four distinct air mass conditions (Marine, Continental, Mixed-1, and Mixed-2), were used for this purpose. These were supported by measurements of non-refractory submicron particulate matter (NR-PM1) mass loadings and the core-shell Mie theory model for BC-containing particles. The results suggested that the BC particles exhibited varying sizes (mass median diameters from 0.181 +/- 0.079 mu m to 0.202 +/- 0.064 mu m) and relative coating thicknesses (RCT) (1.3-1.6) under distinct air mass conditions. These characteristics reflected varying source/sink strengths, aging processes of BC, and potential condensable coating material. The aerosol system during the Marine air mass period has lower BC (similar to 0.67 +/- 0.57 mu g m(-3)) and NR-PM1 (12.06 +/- 10.81 mu g m(-3)) mass concentrations, and the lowest RCT on BC (similar to 1.34 +/- 0.14). However, the other periods with continental influence depicted significant coatings on BC (mean RCT >1.5). The coatings on BC particles exhibited daytime enhancement, driven by photochemically produced condensable material, a contrasting diurnal pattern to that of other BC properties. Interestingly, the RCT on BC increased and/or remained invariant with increasing relative humidity (RH) until RH 85 %), indicating the potential role of secondary organics as coatings. The changes in the BC mixing state resulted in a significant alteration to its light-absorption properties. The mean light-absorption enhancement of BC (compared to uncoated BC) ranged from 1.36 +/- 0.14 for the Marine air mass periods to 1.58 +/- 0.15 for the Continental air mass periods, whereas the overall mass absorption cross-sections of BC varied between 7.91 +/- 0.91 to 9.03 +/- 0.84 m(2)/g at 550 nm. The key implication of this study is that changes to the BC mixing state, caused by multiple underlying processes unique to tropical atmospheric conditions, can lead to a significant enhancement in its light-absorption characteristics, which can lead to a notable increase in the positive radiative forcing of BC.

期刊论文 2026-02-01 DOI: 10.1016/j.atmosres.2025.108641 ISSN: 0169-8095

The thermal stability of permafrost, a foundation for engineering infrastructure in cold regions, is increasingly threatened by the dual stressors of climate change and anthropogenic disturbance. This study investigates the dynamics of the crushed rock revetted embankment at the Kunlun Mountain Section of the Qinghai-Tibet Railway, systematically investigating the coupled impacts of climate warming and engineering activities on permafrost thermal stability using borehole temperature monitoring data (2008-2024) and climatic parameter analysis. Results show that under climate-driven effects, the study area experienced an air temperature increase of 0.2 degrees C per decade over the 2015-2024. Concurrently, the mean annual air thawing degree-days (TDD) rose by 13.8 degrees C center dot d/a, leading to active-layer thickening at a rate of 3.8 cm center dot a- 1at natural ground sites. From 2008 to 2024, the active layer had thickened by 0.7-0.8 m. At the embankment toe (BH 5), the active-layer thickening rate (3.3 cm center dot a- 1) was 25 % lower than that at the natural ground borehole (3.8 cm center dot a- 1); correspondingly, the underlying permafrost temperature increase rate at the toe (0.3 degrees C per decade) was lower than that at the natural borehole (0.5-0.6 degrees C per decade). Permafrost warming rates decreased with depth. Shallow layers (above -2 m) were significantly influenced by climate, with warming rates of 0.3-0.6 degrees C per decade. In contrast, deep layers (below -10 m) showed warming rates converging with the background atmospheric temperature trend (0.2 degrees C per decade). Thermal regime disturbance was most pronounced at horizontal distances of 3.0-5.0 m from the embankment. Nevertheless, the crushed-rock revetment maintained a permafrost table 0.6 m shallower than that of natural ground, confirming its thermal diode effect (facilitating convective cooling in winter), which partially offset climate warming impacts. This study provides critical empirical data and validates the cooling mechanism of crushed-rock revetment, which is essential for predicting the long-term thermal stability and informing adaptive maintenance strategies for railway infrastructure in warming permafrost regions.

期刊论文 2026-02-01 DOI: 10.1016/j.coldregions.2025.104777 ISSN: 0165-232X

Here, we present the result of different models for active layer thickness (ALT) in an area of the Italian Central Alps where a few information about the ALT is present. Looking at a particular warm year (2018), we improved PERMACLIM, a model used to calculate the Ground Surface Temperature (GST) and applied two different versions of Stefan's equation to model the ALT. PERMACLIM was updated refining the temporal basis (daily respect the monthly means) of the air temperature and the snow cover. PERMACLIM was updated also to minimize the bias of the snow cover in summer months using the PlanetScope images. Moreover, the contribution of the solar radiation was added to the air temperature to improve the summer GST. The modelled GST showed a good calibration and, among the two versions of Stefan's equation, the first (ALT1) indicates a maximum active layer thickness of 7.5 m and showed a better accuracy with R2 of 0.93 and RMSE of 0.32 m. The model underlined also the importance of better definition of the thermal conductivity of the ground that can strongly influence the ALT.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104762 ISSN: 0165-232X

Permafrost is undergoing widespread degradation affected by climate change and anthropogenic factors, leading to seasonal freezing and thawing exhibiting interannual, and fluctuating differences, thereby impacting the stability of local hydrological processes, ecosystems, and infrastructure. To capture this seasonal deformation, scholars have proposed various InSAR permafrost deformation models. However, due to spatial-temporal filtering smoothing high-frequency deformation and the presence of approximate assumptions in permafrost models, such differences are often difficult to accurately capture. Therefore, this paper applies an InSAR permafrost monitoring method based on moving average models and annual variations to detect freezing and thawing deformation in the Russian Novaya Zemlya region from 2017 to 2021 using Sentinel-1 data. Most of the study area's deformation rates remained between 10 and 10 mm/yr, while in key oil extraction areas, they reached -20 mm/yr. Seasonal deformation amplitudes were relatively stable in urban areas, but reached 90 mm in regions with extensive development of thermokarst lakes, showing a significant increasing trend. To validate the accuracy of the new method in capturing seasonal deformations, we used seasonal deformations obtained from different methods to retrieval the Active Layer Thickness (ALT), and compared them with field ALT measurement data. The results showed that the new method had a smaller RMSE and improved accuracy by 5% and 30% in two different ALT observation areas, respectively, compared to previous methods. Additionally, by combining the spatial characteristics of seasonal deformation amplitudes and ALT, we analyzed the impact of impermeable surfaces, confirming that human-induced surface hardening alters the feedback mechanism of perennial frozen soil to climate.

期刊论文 2025-12-01 DOI: 10.6038/cjg2024S0285 ISSN: 0001-5733

When developing Arctic territories, studying and forecasting the state of cryogenic landscapes in the context of climate change plays an important role. General conclusions about permafrost degradation do not fully capture changes at regional and local levels, as the direction and pace of landscape transformation depend on many factors, including the specific characteristics of the terrain. Permafrost degradation and changes in the depth of the active layer thickness (ALT) can be accompanied by alterations in ground vegetation cover (GVC) and surface moisture, which can be recorded through remote sensing (RS) data. However, there is a knowledge gap regarding the use of RS data to identify long-term trends in the phytocenotic properties of GVC and soil moisture at different geomorphological levels, as well as to determine the relationship between these trends and changes in ALT. In this study, based on Landsat data from 1985 to 2024, changes in GVC and soil moisture across various geomorphological levels were identified in a local area of the Yamal Peninsula. The analysis used the NDVI vegetation index, the NDWI moisture index, and the WI (Wetness Index) temperature-vegetation index, which reflects the moisture content of GVC and soil. The general trend observed is an increase in the growth rates of these indices as the geomorphological levels rise from the floodplain to Terrace IV. A comparison of these observed trends in the NDVI, NDWI, and WI indices with in situ geocryological observations shows the potential of using these indices as indicators of ALT change.

期刊论文 2025-11-01 DOI: 10.1016/j.rsase.2025.101813 ISSN: 2352-9385

Highlights What are the main findings? Permafrost in the Muri area responded to human disturbance without significant spatial expansion during 2000-2024. The semi-arid climate, rough terrain, thin root zone and gappy vertical structure underneath were the major factors. What are the implications of the main findings? Annual ALT estimated from 2000 to 2024 filled the data gap of high-resolution ALT in the Muri area. Knowledge was provided for a better understanding of alpine permafrost development.Highlights What are the main findings? Permafrost in the Muri area responded to human disturbance without significant spatial expansion during 2000-2024. The semi-arid climate, rough terrain, thin root zone and gappy vertical structure underneath were the major factors. What are the implications of the main findings? Annual ALT estimated from 2000 to 2024 filled the data gap of high-resolution ALT in the Muri area. Knowledge was provided for a better understanding of alpine permafrost development.Abstract Alpine permafrost plays a vital role in regional hydrology and ecology. Alpine permafrost is highly sensitive to climate change and human disturbance. The Muri area, which is located in the headwaters of the Datong River, northeast of the Tibetan Plateau, has undergone decadal mining, and the permafrost stability there has attracted substantial concerns. In order to decipher how and to what extent the permafrost in the Muri area has responded to the decadal mining in the context of climate change, daily MODIS land surface temperatures (LSTs) acquired during 2000-2024 were downscaled to 30 m x 30 m. The active layer thickness (ALT)-ground thaw index (DDT) coefficient was derived from in situ ALT measurements. An annual ALT of 30 m x 30 m spatial resolution was subsequently estimated from the downscaled LST for the Muri area using the Stefan equation. Validation of the LST and ALT showed that the root of mean squared error (RMSE) and the mean absolute error (MAE) of the downscaled LST were 3.64 degrees C and -0.1 degrees C, respectively. The RMSE and MAE of the ALT estimated in this study were 0.5 m and -0.25 m, respectively. Spatiotemporal analysis of the downscaled LST and ALT found that (1) during 2000-2024, the downscaled LST and estimated ALT delineated the spatial extent and time of human disturbance to permafrost in the Muri area; (2) human disturbance (i.e., mining and replantation) caused ALT increase without significant spatial expansion; and (3) the semi-arid climate, rough terrain, thin root zone and gappy vertical structure beneath were the major controlling factors of ALT variations. ALT, estimated in this study with a high resolution and accuracy, filled the data gaps of this kind for the Muri area. The ALT variations depicted in this study provide references for understanding alpine permafrost evolution in other areas that have been subject to human disturbance and climate change.

期刊论文 2025-10-19 DOI: 10.3390/rs17203482

The Arctic has been warming much faster than the global average, known as Arctic amplification. The active layer is seasonally frozen in winter and thaws in summer. In the 2017 Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign, airborne L- and P- band synthetic aperture radar (SAR) was used to acquire a dataset of active layer thickness (ALT) and vertical soil moisture profile, at 30 m resolution for 51 swaths across the ABoVE domain. Using a thawing degree day (TDD) model, ALT=K root TDD, we estimated ALT along the ABoVE swaths employing the 2-m air temperature from ERA5. The coefficient (K) calibrated has an R2=0.9783. We also obtained an excellent fit between ALT and K root(TDD/theta) where theta is the soil moisture from ERA5 (R2=0.9719). Output based on shared-social economic pathway (SSP) climate scenarios SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 from seven global climate models (GCMs), statistically downscaled to 25-km resolution, was used to project the impacts of climate warming on ALT. Assuming ALT=K root TDD, the projections of UKESM1-0-LL GCM resulted in the largest projected ALT, up to about 0.7 m in 2080s under SSP5-8.5. Given that the mean observed ALT of the study sites is about 0.482 m, this implies that ALT will increase by 0.074 to 0.217 m (15% and 45%) in 2080s. This will have substantial impacts on Arctic infrastructure. The projected settlement Iset (cm) of 1 to 7 cm will also impact the infrastructure, especially by differential settlement due to the high spatial variability of ALT and soil moisture, given at local scale the actual thawing will partly depend on thaw sensitivity of the material and potential thaw strain, which could vary widely from location to location.

期刊论文 2025-10-01 DOI: 10.1061/JHYEFF.HEENG-6485 ISSN: 1084-0699

The distribution and variation of active layer thickness (ALT) are crucial indicators for assessing the stability and environmental conditions of permafrost regions, which significantly impact regional hydrology, ecology, climate change, engineering construction, and disaster risk assessment. Based on the measured ALT data and Stefan equation, this study investigated the spatial distribution characteristics of ALT in the Tuotuo River region and explored the factors influencing its variability. The results showed that the ALT in the Tuotuo River area ranged from 0.15 to 5.18 m, with an average value of 2.65 m. The spatial distribution showed that the ALT was thinner in the southern region, which exhibited strong spatial heterogeneity, while the northeastern region generally had thicker ALT. Additionally, mountain areas tended to have thinner ALT, whereas plains showed thicker ALT. There was a good linear correlation between the simulated and measured ALT values, and the R 2 was up to 80%. The ALT in the Tuotuo River area was mainly controlled by air temperature and surface water thermal conditions. Among all factors, soil water content was identified as the key determinant. Topographic factors influenced ALT distribution and variation mainly through their impact on soil water content.

期刊论文 2025-08-27 DOI: 10.1002/ppp.2290 ISSN: 1045-6740

Understanding the evolution of permafrost extent and active layer thickness (ALT) surrounding Antarctica is critical to global climate change and ecosystem transformations in the polar regions. However, due to the remoteness and harsh environment of Antarctica, most studies lack long-term and a regional perspective on the variations of ALT in Antarctica, resulting in hindering accurate assessment of ALT dynamics. In this study, based on MODIS land surface temperature (LST) and soil climate station data, we used the Stefan model to reconstruct ALT in the ice-free area of the McMurdo Dry Valleys (MDV) in East Antarctica from 2003 to 2022. The modeled ALT was verified against ground observations showing a good correlation (R) of 0.72 (p < 0.001), with an RMSE of 12.66 cm. The results indicate that the ALT exhibits a decreasing trend from coastal to inland, ranging from a maximum of 60 cm near the coastal area to zero in the polar plateau. Furthermore, within the inland valleys, deeper ALT values are mainly distributed in the lower elevation areas, reaching up to 60 cm at the lowest altitudes. During the period from 2003 to 2022, the interannual variability in ALT was notable, especially in coastal areas, with a maximum amplitude close to 30 cm in the years 2012 and 2016. Our study proved that the Stefan model with parameters estimated by MODIS LST and soil climate station data has good potential to reconstruct large-scale ALT in the ice-free area of Antarctica.

期刊论文 2025-08-17 DOI: 10.1002/ppp.70005 ISSN: 1045-6740

This study examines the fragility response of an earthen embankment supported on a liquefiable deposit subjected to pulse and nonpulse ground motions. Fragility curves are developed based on two key parameters, namely, median seismic intensity and overall variability in the analysis. Such curves represent the vulnerability of an earthen embankment under two distinct types of ground motions. Numerical simulations are performed using two-dimensional finite-element analysis under plane strain conditions. The saturated sandy deposits in the foundation are modeled with the UBC3D-PLM constitutive model and calibrated with appropriate parameters. Two damage indexes are introduced: normalized embankment settlement and lateral embankment deformation. Nonlinear incremental dynamic analysis is performed for various ground motions, and fragility parameters are developed for different damage levels. The results show that pulse-type earthquakes cause more serious damage to earthen structures than nonpulse-type earthquakes, increasing the vulnerability. Further, the liquefiable layer thickness in the foundation soil plays a significant role in the vulnerability assessment of the embankment. The foundation liquefiable layer with less thickness may lead to an early onset of damage and lower the seismic demand on the embankment structure at lower damage levels. With an increase in the layer thickness, seismic demand reduces, with the drainage path playing a critical role.

期刊论文 2025-08-01 DOI: 10.1061/IJGNAI.GMENG-11437 ISSN: 1532-3641
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共139条,14页