The Tibetan Plateau (TP), often referred to as the 'Asian Water Tower', plays a critical role in regulating the hydrological cycle and influencing global climate patterns. Its unique topography and climatic conditions result in pronounced seasonal freeze-thaw (FT) dynamics of the land surface, which are critical for understanding permafrost ecosystem responses to climate change. However, existing studies on FT dynamics over the TP are limited by either short observational periods or deficiency in accuracy, failing to capture the long-term FT processes comprehensively. This study presents a novel satellite-based approach for monitoring the FT dynamics over the TP from 1979 to 2022, utilizing passive microwave observations. We developed a new algorithm that integrates discriminant function algorithm (DFA) with a seasonal threshold algorithm (STA), employing the freeze-thaw index (FTI) as the classification variable to determine optimal FT thresholds. The strong performance of the algorithm was confirmed by in-situ validation, with an overall accuracy of 91.46%, a Kappa coefficient of 0.83, and an F1-score of 0.92, outperforming other remote sensing-derived FT products such as SMAP (OA = 89.44%, Kappa = 0.79, F1 = 0.89). Results reveal significant changes in surface freeze-thaw dynamics over the past four decades. Between 1988-2022, frozen days exhibited a significant decreasing trend of -0.19 daysyear(-)(1), primarily attributed to the delayed freeze onset (0.19 daysyear(-)(1)), while thaw onset showed no significant trend. Spatially, permafrost regions experienced a more pronounced decrease in frozen days and earlier thaw onset compared to seasonally frozen regions. Moreover, marked interannual trend differences in FT processes were observed across elevation gradients, with higher elevations showing more negative trends in frozen days and thaw onset. This study provides a reliable and up-to-date analysis of surface FT process changes over the TP, informed by long-term satellite-based observational perspectives. These analyses revealed marked spatial heterogeneity in surface FT dynamics across the TP region, underscoring the impacts of climate change on the cryosphere and hydrology.
Study region The eastern Qilian Mountains, located on the northeastern margin of the Tibetan Plateau, span elevations from similar to 2600 to 5300 m around the Menyuan area. It is characterized by cold, alpine climatic conditions and hosts both permafrost and seasonally frozen ground, which are highly sensitive to climate change and have important hydrological and ecological implications. Study focus This study develops an enhanced multi-temporal InSAR framework to monitor frozen ground dynamics in the eastern Qilian Mountains using Sentinel-1 data from 2014 to 2024, with a particular focus on the permafrost-seasonally frozen ground transition zone around Menyuan. It addresses key challenges in permafrost monitoring by implementing a co-seismic deformation separation model, a Common Scene Stack (CSS)-based atmospheric correction method, and a time-series decomposition model with linearly varying annual amplitude to capture evolving freeze-thaw behavior under climate change. New hydrological insights for the region The results reveal clear hydrological and thermal contrasts between permafrost and seasonally frozen ground. Seasonally frozen ground exhibits higher seasonal deformation amplitudes, more rapid interannual changes, and shorter thermal response lags compared to permafrost, reflecting its more dynamic hydrothermal regime. The estimated freeze-thaw layer thickness ranges from 0 to 5.3 m, with thinning trends in seasonally frozen ground at lower elevations and slight thickening of active layers in high-elevation permafrost. These findings highlight ongoing frozen ground degradation and provide new insights into subsurface water-energy interactions and long-term cryospheric responses to climate warming in alpine environments.
Rapid climate change in the Northern Hemisphere cryosphere threatens ancient permafrost carbon. Once thawed, permafrost carbon may migrate to surface waters. However, the magnitude of permafrost carbon processed by northern freshwater remains uncertain. Here, we compiled '1800 radiocarbon data of aquatic dissolved organic carbon (DOC) and particulate organic carbon (POC) in the Arctic and Qinghai -Tibet Plateau (QTP) to explore the fate of permafrost carbon under climate warming over the past 30 years. We showed that the contribution of aged carbon has significantly increased since 2015. Approximately 70 % of DOC and POC was derived from aged carbon for QTP rivers. In Arctic waters, an average of '67 % of POC was derived from aged carbon, however, '75 % of DOC was derived from modern carbon, mainly due to low temperatures and protection by vegetation limiting the export of aged DOC. For both regions, DOC 14 C age was positively correlated with the active layer thickness, whereas the POC 14 C age was positively correlated with the mean annual ground temperature, suggesting that gradual thaw accelerated the mobilization of aged DOC while abrupt thaw facilitated the export of aged POC. Furthermore, POC 14 C age was positively correlated with the soil organic carbon density, which was attributed to well-developed pore networks facilitated aged carbon output. This study suggests that permafrost carbon release is affected by both permafrost thermal properties and soil organic carbon density, which should be considered in evaluation of permafrost carbon -climate feedback.
Permafrost soils contain approximately twice the amount of carbon as the atmosphere and this carbon could be released with Arctic warming, further impacting climate. Mosses are major component of Arctic tundra ecosystems, but the environmental drivers controlling heat penetration though the moss layer and into the soil and permafrost are still debated, especially at fine spatial scales where microtopography impacts both vegetation and soil moisture. This study measured soil temperature profiles (1-15 cm), summer thaw depth, water table depth, soil moisture, and moss thickness at a fine spatial scale (2 m) together with meteorological variables to identify the most important controls on the development of the thaw depth during two Arctic summers. We found a negative relationship between the green moss thickness (up to 3 cm) and the soil temperatures at 15 cm, suggesting that mosses insulated the soil even at high volumetric water contents (>70%) in the top 5 cm. A drier top (2-3 cm) green moss layer better insulated deep (15 cm) soil layers by reducing soil thermal conductivity, even if the moss layers immediately below the top layer were saturated. The thickness of the top green moss layer had the strongest relationships with deeper soil temperatures, suggesting that the top layer had the most relevant role in regulating heat transfer into deeper soils. Further drying of the top green moss layer could better insulate the soil and prevent permafrost thawing, representing a negative feedback on climate warming, but damage or loss of the moss layer due to drought or fire could reduce its insulating effects and release carbon stored in the permafrost, representing a positive feedback to climate warming.
In this study, the internal structure and seasonal variations of cryo-hydrogeological features were investigated in the Fuglebekken catchment, located near the Polish Polar Station Hornsund in Svalbard. Over a few years, rising air temperatures and intensified water circulation have significantly altered the distribution, extent, and state of ground temperature and groundwater. Spatial variations in these changes are influenced by surface and groundwater presence and flow patterns. Accelerated permafrost degradation and reduced seasonal soil freezing lead to a transition from a primarily frozen winter state to a partially thawed state with year-round active groundwater flow paths. To capture spatial variations in changing cryo-hydrogeological conditions, a multi-source approach was employed, integrating in situ borehole and piezometer data with geophysical techniques including Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic Method (FDEM). The main goal was to identify unconfined and confined aquifers, and the permafrost table. Changes in the active layer thickness between areas with and without water influence were estimated. The findings contribute to the knowledge of high-latitude hydrology and the impact of climate change on permafrost degradation and associated groundwater dynamics.
Recent climate warming has accelerated permafrost thaw and dynamics of thermokarst lakes (TLs) on the Tibetan Plateau (TP). Yet, owing to the lack of long-term monitoring of TLs, our understanding of lake evolution processes and their driving factors remains uncertain. Here, using the global surface water product and timeseries Landsat imagery, we identified 58,538 TLs (0.01-3 km2) and determined the primary occurrence year of lake changes from 1990 to 2022. Our results indicated that TLs on the TP are primarily located in the central inland region, over 82 % of lakes experienced area expansion, and only 15 % in the northwest show decrease in area. Annual number of lake expansion peaked in 2016, whereas lake shrinkage was most common in 2019. The calculated lake area errors, field investigations, and validation of lake disturbance time demonstrated high accuracy and consistency. We applied the optimal machine learning regression model to distinguish the different drivers for lake expansion and shrinkage. The topographic and climatic factors are primary drivers for lake expansion, while differences in evaporation trend and soil temperature trend might contribute to lake shrinkage. This study highlights the vulnerability of permafrost on the TP to climate change, which can contribute to carbon sequestration estimation and infrastructure maintenance.
The thermal stability of permafrost, a foundation for engineering infrastructure in cold regions, is increasingly threatened by the dual stressors of climate change and anthropogenic disturbance. This study investigates the dynamics of the crushed rock revetted embankment at the Kunlun Mountain Section of the Qinghai-Tibet Railway, systematically investigating the coupled impacts of climate warming and engineering activities on permafrost thermal stability using borehole temperature monitoring data (2008-2024) and climatic parameter analysis. Results show that under climate-driven effects, the study area experienced an air temperature increase of 0.2 degrees C per decade over the 2015-2024. Concurrently, the mean annual air thawing degree-days (TDD) rose by 13.8 degrees C center dot d/a, leading to active-layer thickening at a rate of 3.8 cm center dot a- 1at natural ground sites. From 2008 to 2024, the active layer had thickened by 0.7-0.8 m. At the embankment toe (BH 5), the active-layer thickening rate (3.3 cm center dot a- 1) was 25 % lower than that at the natural ground borehole (3.8 cm center dot a- 1); correspondingly, the underlying permafrost temperature increase rate at the toe (0.3 degrees C per decade) was lower than that at the natural borehole (0.5-0.6 degrees C per decade). Permafrost warming rates decreased with depth. Shallow layers (above -2 m) were significantly influenced by climate, with warming rates of 0.3-0.6 degrees C per decade. In contrast, deep layers (below -10 m) showed warming rates converging with the background atmospheric temperature trend (0.2 degrees C per decade). Thermal regime disturbance was most pronounced at horizontal distances of 3.0-5.0 m from the embankment. Nevertheless, the crushed-rock revetment maintained a permafrost table 0.6 m shallower than that of natural ground, confirming its thermal diode effect (facilitating convective cooling in winter), which partially offset climate warming impacts. This study provides critical empirical data and validates the cooling mechanism of crushed-rock revetment, which is essential for predicting the long-term thermal stability and informing adaptive maintenance strategies for railway infrastructure in warming permafrost regions.
Near-surface temperature and moisture are key boundary conditions for simulating permafrost distribution, projecting its response to climate change, and evaluating the surface energy balance in alpine regions. However, in desertified permafrost zones of the Qinghai-Tibet Plateau (QTP), the observations remain sparse, and reported trends vary considerably among sites. This lack of consistent evidence limits the ability to represent microenvironmental processes in models and to predict their influence on permafrost stability. From September 2021 to August 2024, we conducted continuous observations at a desertified permafrost site on the central QTP, covering the vertical range from 150 cm above to 100 cm below the ground surface (boundary layer). Measurements included air and ground temperature, air humidity, soil moisture, wind speed, and net radiation. Results showed that the mean annual air temperature increased with decreasing height at a gradient of approximately 0.42 degrees C/m, while mean annual air humidity remained nearly constant at 56.8 +/- 1.1 % (150-0 cm). In the near-surface soil layer (0 similar to -10 cm), temperature rose by 3.6 +/- 0.1 degrees C and moisture decreased by 34.0 +/- 2.7 %. The mean annual ground temperature increased with depth at a rate of about 0.55 degrees C/m, whereas soil moisture decreased between -20 and -60 cm (52.86 %/m) and increased between -60 and -100 cm (56.30 %/m). Seasonal patterns showed marked difference: in the freezing season, the calculated total temperature increment within the boundary layer (1.91 degrees C) was 61 % lower than the observed value (4.88 degrees C), while in the thawing season, it was 58 % higher (4.38 degrees C > 2.77 degrees C). These results reveal strong vertical gradients and seasonal contrasts in thermal and moisture regimes, emphasizing the need to integrate coupled temperature-moisture processes into boundary layer parameterizations for cold-region environments. Improved representations can enhance permafrost modeling and inform infrastructure design in regions experiencing both warming and desertification.
Accurate soil thermal conductivity (STC) data and their spatiotemporal variability are critical for the accurate simulation of future changes in Arctic permafrost. However, in-situ measured STC data remain scarce in the Arctic permafrost region, and the STC parameterization schemes commonly used in current land surface process models (LSMs) fail to meet the actual needs of accurate simulation of hydrothermal processes in permafrost, leading to considerable errors in the simulation results of Arctic permafrost. This study used the XGBoost method to simulate the spatial-temporal variability of the STC in the upper 5 cm active layer of Arctic permafrost during thawing and freezing periods from 1980 to 2020. The findings indicated STC variations between the thawing and freezing periods across different years, with values ranging from-0.4 to 0.28 W & sdot;m-1 & sdot;K-1. The mean STC during the freezing period was higher than that during the thawing period. Tundra, forest, and barren land exhibited the greatest sensitivity of STC to freeze-thaw transitions. This is the first study to explore the long-term spatiotemporal variations of STC in Arctic permafrost, and these findings and datasets can provide useful support for future research on Arctic permafrost evolution simulations.
Both freeze-thaw cycles and vegetation cover changes significantly influence slope runoff and sediment yield in permafrost regions. Nevertheless, their synergistic mechanisms remain inadequately quantified and poorly understood. Through simulated rainfall experiments conducted on slopes in the source region of the Yangtze River, this study investigated the impacts of vegetation cover variation combined with soil freeze-thaw processes on runoff and sediment yield from typical alpine meadows and alpine steppes. The results indicate that: (1) The three factors of vegetation type and coverage, as well as rainfall intensity, jointly shape the relationship between precipitation runoff and sediment. Alpine meadows showed stronger erosion resistance than alpine steppes. (2) The freeze-thaw process of soil dominated the runoff and sediment generation: Runoff volume across varying vegetation coverage followed the order: autumn freezing period > spring thawing period > summer thawed period. However, sediment yield was highest during the spring thawing period, followed by the autumn freezing period and summer thawed period. (3) For higher vegetation coverage, freeze-thaw effects had a greater impact on runoff than on sediment yield; on the contrary, under low-coverage vegetation, the freeze-thaw process influenced sediment yield more than runoff; These findings provide theoretical guidance for achieving integrated soil erosion regulation goals in alpine grassland ecosystems within the Qinghai-Tibet Plateau under climate change.