共检索到 1147

Understanding soil organic carbon (SOC) distribution and its environmental controls in permafrost regions is essential for achieving carbon neutrality and mitigating climate change. This study examines the spatial pattern of SOC and its drivers in the Headwater Area of the Yellow River (HAYR), northeastern Qinghai-Xizang Plateau (QXP), a region highly susceptible to permafrost degradation. Field investigations at topsoils of 86 sites over three summers (2021-2023) provided data on SOC, vegetation structure, and soil properties. Moreover, the spatial distribution of key permafrost parameters was simulated: temperature at the top of permafrost (TTOP), active layer thickness (ALT), and maximum seasonal freezing depth (MSFD) using the TTOP model and Stefan Equation. Results reveal a distinct latitudinal SOC gradient (high south, low north), primarily mediated by vegetation structure, soil properties, and permafrost parameters. Vegetation coverage and above-ground biomass showed positive correlation with SOC, while soil bulk density (SBD) exhibited a negative correlation. Climate warming trends resulted in increased ALT and TTOP. Random Forest analysis identified SBD as the most important predictor of SOC variability, which explains 38.20% of the variance, followed by ALT and vegetation coverage. These findings likely enhance the understanding of carbon storage controls in vulnerable alpine permafrost ecosystems and provide insights to mitigate carbon release under climate change.

期刊论文 2025-12-01 DOI: 10.1007/s43979-025-00130-1 ISSN: 2788-8614

Thaw hazards in high-latitude and glaciated regions are becoming increasingly frequent because of global climate warming and human activities, posing significant threats to infrastructure stability and environmental sustainability. However, despite these risks, comprehensive investigations of thaw-hazard susceptibility in permafrost regions remain limited. Here, this gap is addressed by a systematic and long-term investigation of thaw hazards in China's Qinghai Province as a representative permafrost area. A detailed inventory of 534 thawhazard sites was developed based on remote sensing, field verification, and surveys by a UAV, providing critical data for susceptibility analysis. Eleven environmental factors influencing thaw hazards were identified and analyzed using information gain and Shapley additive explanation. By using the random forest model, a susceptibility map was generated, categorizing the study area into five susceptibility classes: very low, low, moderate, high, and very high. The key influencing factors include precipitation, permafrost type, temperature change rate, and human activity. The results reveal that 17.5 % of the permafrost region within the study area is classified as high to very high susceptibility, concentrated primarily near critical infrastructure such as the Qinghai-Tibet Railway, potentially posing significant risks to its structural stability. The random forest model shows robust predictive capability, achieving an accuracy of 0.906 and an area under the receiver operating characteristic curve of 0.965. These findings underscore the critical role of advanced modeling in understanding the spatial distribution and drivers of thaw hazards, offering actionable insights for hazard mitigation and infrastructure protection in permafrost regions under a changing climate.

期刊论文 2025-12-01 DOI: 10.1016/j.coldregions.2025.104648 ISSN: 0165-232X

Understanding changes in water balance and land-atmosphere interaction under climate change is crucial for managing water resources in alpine regions, especially in the Qinghai-Tibet Plateau (QTP). Evapotranspiration (ET), a key process in the land-atmosphere interaction, is influenced by permafrost degradation. As the active layer in permafrost regions deepens due to climate warming, the resulting shifts in surface hydrologic connectivity and water storage capacity affect vegetation's ability to access water, thereby influencing its growth and regulating ET dynamics, though the full complexity of this process remains unclear. This study employs the Budyko-Fu model to assess the spatiotemporal dynamics of ET and the ET ratio (the ratio of ET to precipitation) on the QTP from 1980 to 2100. While ET shows a continuous upward trend, the ET ratio exhibits a non-monotonic pattern, increasing initially and then decreasing. More than two-thirds of permafrost areas on the QTP surpassed the critical ET ratio threshold by 2023, under three emission scenarios. By 2100, nearly all areas are projected to reach the tipping point, with 97 % affected under the SSP5-8.5 scenario. Meadow and steppe regions are expected to encounter this threshold earlier, whereas forested areas will be less affected, with over 80 % unlikely to reach the tipping point by 2100. Basin-level differences are notable: nearly 90 % of the Qaidam basin exceeded the threshold before 2023, compared to less than 50 % in the Yangtze basin. By 2100, more than 80 % of regions in all basins are expected to cross the tipping point due to ongoing permafrost degradation. This study advances understanding of land-atmosphere interactions in alpine regions, providing critical insights for water resource management and improving extreme weather predictions.

期刊论文 2025-12-01 DOI: 10.1016/j.jhydrol.2025.133912 ISSN: 0022-1694

Substantial nitrous oxide (N2O) emissions from permafrost-affected regions could accelerate climate warming, given that N2O exhibits approximately 300 times greater radiative forcing potential than carbon dioxide. Pronounced differences exist in N2O emissions between freeze and thaw periods (FP and TP), but the mechanisms by which environmental factors regulate the production and emission of N2O during these two periods have not been thoroughly examined. We therefore combined static chamber gas chromatography, in-situ soil temperature (ST) and moisture (SM) monitoring, and 16S rRNA sequencing to investigate seasonal N2O variations in the Qinghai-Tibet Plateau (QTP) alpine meadow ecosystem, and assess the relative contributions of environmental and microbial drivers. Our findings indicate that N2O fluxes (-3.15 to 6.10 mu g m-2 h-1) fluctuated between weak sources and sinks, peaking during FP, particularly at its late stage with initial surface soil thawing. Soil properties affect N2O emissions by regulating denitrification processes and altering microbial community diversity. During the FP, ST fluctuations control N2O release by modifying mineral nutrient availability. During TP, soil texture modulates denitrification-driven N2O production through its effect on SM. Spring N2O pulses likely originate from microbial reactivation in thawed soil. N2O accumulated in frozen soil may gradually release during vertical profile thawing. On the QTP, a warmer and wetter climate scenario may alter N2O emissions by modifying the duration of the FP and TP and phase-specific hydrothermal allocation. This study provides mechanistic insights for predicting climate change impacts on N2O flux in fragile alpine meadow ecosystems.

期刊论文 2025-11-15 DOI: 10.1016/j.atmosenv.2025.121510 ISSN: 1352-2310

Thawing-triggered slope failures and landslides are becoming an increasing concern in cold regions due to the ongoing climate change. Predicting and understanding the behaviour of frozen soils under these changing conditions is therefore critical and has led to a growing interest in the research community. To address this challenge, we present the first mesh-free smoothed particle hydrodynamics (SPH) computational framework designed to handle the multi-phase and multi-physic coupled thermo-hydro-mechanical (THM) process in frozen soils, namely the THM-SPH computational framework. The frozen soil is considered a tri-phase mixture (i.e., soil, water and ice), whose governing equations are then established based on u-p-T formulations. A critical-state elasto-plastic Clay and Sand Model for Frozen soils (CASM-F), formulated in terms of solid-phase stress, is then introduced to describe the transition response and large deformation behaviour of frozen soils due to thawing action for the first time. Several numerical verifications and demonstrations highlight the usefulness of this advanced THM-SPH computational framework in addressing challenging problems involving thawing-induced large deformation and failures of slopes. The results indicate that our proposed single-layer, fully coupled THM-SPH model can predict the entire failure process of thawing-induced landslides, from the initiation to post-failure responses, capturing the complex interaction among multiple coupled phases. This represents a significant advancement in the numerical modelling of frozen soils and their thawing-induced failure mechanisms in cold regions.

期刊论文 2025-11-01 DOI: 10.1016/j.cma.2025.118252 ISSN: 0045-7825

This study highlights the results of a palaeoecological analysis conducted on five permafrost peatlands in the northern tundra subzone along the Barents Sea coast in the European Arctic zone. The depth of the peat cores that were sampled was approximately 2 m. The analysis combined data on the main physical and chemical soil properties, radiocarbon dating, botanical composition, and mass fraction of polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 PAHs in peat organic layers ranged from 140 to 254 ng/g, with an average of 182 ng/g. The peatlands studied were dominated by PAHs with a low molecular weight: naphthalene, phenanthrene, fluoranthene, pyrene, chrysene. The vertical distribution patterns of PAHs along the peat profile in the active layer and permafrost were determined. PAHs migrating down the active layer profile encounter the permafrost barrier and accumulate at the boundary between active layer and permafrost layer. The deep permafrost layers accumulate large amounts of PAHs and PAH derivatives, which are products of lignin conversion during the decomposition of grassy and woody vegetation during the Holocene climate optima. The total toxic equivalency concentration (TEQ) was calculated. Peatlands from the Barents Sea coast have low toxicity for carcinogenic PAHs throughout the profile. TEQ ranged from a minimum of 0.1 ng/g to a maximum of 13.5 ng/g in all peatlands investigated. For further potential use in Arctic/sub-Arctic environmental studies, PAH indicator ratios were estimated. In all investigated sections and peatland horizons, the most characteristic ratios indicate the petrogenic (natural) origin of PAHs.

期刊论文 2025-11-01 DOI: 10.1016/j.marpolbul.2025.118370 ISSN: 0025-326X

Thawing permafrost alters climate not only through carbon emissions but also via energy-water feedback and atmospheric teleconnections. This review focuses on the Tibetan Plateau, where strong freeze-thaw cycles, intense radiation, and complex snow-vegetation interactions constitute non-carbon climate responses. We synthesize recent evidence that links freeze-thaw cycles, ground heat flux dynamics, and soil moisture hysteresis to latent heat feedback, monsoon modulation, and planetary wave anomalies. Across these pathways, both observational and simulation studies reveal consistent signals of feedback amplification and nonlinear threshold behavior. However, most Earth system models underrepresent these processes due to simplifications in freezethaw processes, snow-soil-vegetation coupling, and cross-seasonal memory effects. We conclude by identifying priority processes to better simulate multi-scale cryosphere-climate feedback, especially under continued climate warming in high-altitude regions.

期刊论文 2025-11-01 DOI: 10.1016/j.earscirev.2025.105248 ISSN: 0012-8252

The Arctic has been warming much faster than the global average, known as Arctic amplification. The active layer is seasonally frozen in winter and thaws in summer. In the 2017 Arctic Boreal Vulnerability Experiment (ABoVE) airborne campaign, airborne L- and P- band synthetic aperture radar (SAR) was used to acquire a dataset of active layer thickness (ALT) and vertical soil moisture profile, at 30 m resolution for 51 swaths across the ABoVE domain. Using a thawing degree day (TDD) model, ALT=K root TDD, we estimated ALT along the ABoVE swaths employing the 2-m air temperature from ERA5. The coefficient (K) calibrated has an R2=0.9783. We also obtained an excellent fit between ALT and K root(TDD/theta) where theta is the soil moisture from ERA5 (R2=0.9719). Output based on shared-social economic pathway (SSP) climate scenarios SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 from seven global climate models (GCMs), statistically downscaled to 25-km resolution, was used to project the impacts of climate warming on ALT. Assuming ALT=K root TDD, the projections of UKESM1-0-LL GCM resulted in the largest projected ALT, up to about 0.7 m in 2080s under SSP5-8.5. Given that the mean observed ALT of the study sites is about 0.482 m, this implies that ALT will increase by 0.074 to 0.217 m (15% and 45%) in 2080s. This will have substantial impacts on Arctic infrastructure. The projected settlement Iset (cm) of 1 to 7 cm will also impact the infrastructure, especially by differential settlement due to the high spatial variability of ALT and soil moisture, given at local scale the actual thawing will partly depend on thaw sensitivity of the material and potential thaw strain, which could vary widely from location to location.

期刊论文 2025-10-01 DOI: 10.1061/JHYEFF.HEENG-6485 ISSN: 1084-0699

Permafrost thaw is transforming boreal forests into mosaics of wetlands and drier uplands. Topographic controls on hydrological and ecological conditions impact methane (CH4) fluxes, contributing to uncertainty in local and regional CH4 budgets and underlying drivers. The objective of this study was to explore CH4 fluxes and their drivers in a transitioning boreal forest-fen ecosystem (Goldstream Valley, Alaska, USA). This landscape is characterized by thawing discontinuous permafrost and heterogeneous mosaics of fens, collapse-scar channels, and small mounds of permafrost soils. From a survey in July 2021, observed chamber CH4 fluxes included fen areas with intermediate to very high emissions (29.8-635.3 mg CH4 m(-2) d(-1)), clustered locations with CH4 uptake (-2.11 to -0.7 mg CH4 m(-2) d(-1)), and three anomalous emission hotspots (342.4-772.4 mg CH4 m(-2) d(-1)) that were located near samples with lower emissions. Some surface and near-surface variables partially explained the spatial variation in CH4 flux. Log-transformed CH4 flux had a positive linear relationship with soil moisture at 20 cm depth (R-2 = 0.31, p-value < 1e-5) and negative linear relationships with microtopography (R-2 = 0.13, p-value < 0.006) and slope (R-2 = 0.28, p-value < 2e-5). Methane emissions generally occurred in flat, wet, graminoid-dominated fens, whereas CH4 uptake occurred on permafrost mounds dominated by feather mosses and woody vegetation. However, the CH4 hotspots occurred on drier, slightly sloped locations with low or undetectable near-surface methanogen abundance, suggesting that CH4 was produced in deeper soils. When the hotspot samples were omitted, log-transformed CH4 flux had a positive linear relationship with near-surface methanogen abundance (R-2 = 0.29, p-value = 0.0023), and stronger linear relationships with soil moisture, slope, and soil macronutrient concentrations. Our findings suggest that some CH4 emission hotspots could arise from CH4 in deep taliks. The inference that methanogenesis occurs in deep taliks was strengthened by the identification of intrapermafrost taliks across the study area using low-frequency geophysical induction. This study assesses surface spatial heterogeneity in the context of subsurface permafrost conditions and highlights the complexity of CH4 flux patterns in transitioning forest-wetland ecosystems. To better inform regional CH4 budgets, further research is needed to understand the spatial distribution of terrestrial CH4 hotspots and to resolve their surface, near-surface, and subsurface drivers.

期刊论文 2025-10-01 DOI: 10.1088/1748-9326/adff9a ISSN: 1748-9326

Permafrost thaw and thermokarst development pose urgent challenges to Arctic communities, threatening infrastructure and essential services. This study examines the reciprocal impacts of permafrost degradation and infrastructure in Point Lay (Kali), Alaska, drawing on field data from similar to 60 boreholes, measured and modeled ground temperature records, remote sensing analysis, and community interviews. Field campaigns from 2022-2024 reveal widespread thermokarst development and ground subsidence driven by the thaw of ice-rich permafrost. Borehole analysis confirms excess-ice contents averaging similar to 40%, with syngenetic ice wedges extending over 12 m deep. Measured and modeled ground temperature data indicate a warming trend, with increasing mean annual ground temperatures and active layer thickness (ALT). Since 1949, modeled ALTs have generally deepened, with a marked shift toward consistently thicker ALTs in the 21st century. Remote sensing shows ice wedge thermokarst expanded from 60% in developed areas by 2019, with thaw rates increasing tenfold between 1974 and 2019. In contrast, adjacent, undisturbed tundra exhibited more consistent thermokarst expansion (similar to 0.2% yr(-1)), underscoring the amplifying role of infrastructure, surface disturbance, and climate change. Community interviews reveal the lived consequences of permafrost degradation, including structural damage to homes, failing utilities, and growing dependence on alternative water and wastewater strategies. Engineering recommendations include deeper pile foundations, targeted ice wedge stabilization, aboveground utilities, enhanced snow management strategies, and improved drainage to mitigate ongoing infrastructure issues. As climate change accelerates permafrost thaw across the Arctic, this study highlights the need for integrated, community-driven adaptation strategies that blend geocryological research, engineering solutions, and local and Indigenous knowledge.

期刊论文 2025-09-30 DOI: 10.1088/2752-664X/adf1ac
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共1147条,115页