Preparation and tribological investigation of rare earth nanofilm on single-crystal silicon substrate

The self-assembled method was introduced to successfully obtain rare earth(RE) nanofilm on a single-crystal silicon substrate. The resultant film was characterized by means of X-ray photoelectron spectroscopy (XPS), ellipsometer, contact angle meter and atomic force microscopy (AFM). The scratch experiment was performed for interfacial adhesion measurement of the RE film. The friction and wear behavior of RE nanofilm was examined on a DF-PM reciprocating friction and wear tester. The results indicate the RE nanofilin is of low coefficient of friction (COF) and high wear resistance. These desirable characteristics of RE nanofilm together with its nanometer thickness, strong bonding to the substrate and low surface energy make it a promising choice as a solid lubricant film in micro electromechanical system (MEMS) devices.

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周峰/裴小维

联系电话:18919198811

电子邮箱:zhouf@licp.cas.cn

润滑集