头部图片

学科探索

低温2.1GPa强度+50%延展性!中熵合金最新AFM,助力极端环境材料升级 2025-09-11 ; 近年来,高温合金快速发展,不少新的合金体系被开发出来,以应对高温所带来的软化,但与高温相对的还有一种极端环境——深冷环境(如液氢≈20 K、液氦≈4.2 K,外太空≈3K),在深冷环境中同样会对结构材料提出极高要求,维持高强度的同时还需要有足够的塑性和稳定性,以便长期服役所需。然而传统的如晶粒细化、位错累积、非相干析出相等强化机制往往会引入缺陷聚集,这些缺陷在深冷条件下易导致应变集中和不连续塑性流动(DPF),最终使材料在极低温下快速失效。作为低温合金,如何在低温环境下同时获得高的强塑性和稳定性,是最为关键的性能指标。 近日,韩国高丽大学Seok Su Sohn教授团队开发出一种新型Co36Ni46Mo11Al7中熵合金,在液氦温区(4.2K)下展现出高达2.1GPa的超高强度和50%的延展性,成功突破了低温合金中强度与稳定性的长期矛盾。目前这一研究成果已于2025年8月27日在《Advanced Functional Materials》期刊上以题为“Ultrahigh Strength with Suppressed Flow Instability at Liquid Helium Temperature via Coherent Nanoprecipitation in a Medium-Entropy Alloy”的研究论文形式公开发表。 文章链接: https://doi.org/10.1002/adfm.202515593 【核心内容】 在这项研究中,团队通过提高晶格摩擦应力和引入高体积分数的相干L12纳米析出相的策略,设计能够在深冷条件下保持高强高塑的Co36Ni46Mo11Al7合金,通过力学表征,该合金在4.2K下实现了2.1GPa的超高强度和48%的延伸率,微观结构的表征分析证实了这样优异的性能组合来源于团队的微观结构设计策略不仅提供了强化,还促进了Hirth锁的形成,有效抑制了不连续塑性流动(DPF)的发生,最终实现低温条件时强塑的协同优化。 【研究方法】 研究团队采用高纯度元素在氧化锆坩埚中进行真空感应熔炼制备合金铸锭,随后经过均匀化、冷轧、退火和时效等热处理工艺,为了对比,按照相同的熔炼制备了具有FCC基体成分的合金,并对冷轧薄板在1273K和1323K下进行退火,以获得不同晶粒尺寸的FCC单相组织。 通过XRD分析确定了热处理后的相演化,采用EBSD评估晶粒尺寸分布,通过FE-SEM分析析出相的形貌、分布和体积分数,采用TEM和EDS对析出相的结构和变形机理进行了研究,使用APT对详细化学成分进行了表征。力学试验方面,试样的冷却采用液氮预冷+喷射液氦的方式,拉伸时应变速率为10−3;s−1并使用维氏显微硬度计评估合金的硬度。 Co36Ni46Mo11Al7合金的显微组织特征 【研究成果】 ① 室温与液氦温度下的优异力学性能 室温下合金的屈服强度为1.06GPa,抗拉强度为1.48GPa,延伸率为44.7%,随着温度降低到4.2K时,合金的力学性能并未降低,反而有了不同程度的增强,屈服强度达到了1.39GPa,而抗拉强度更是提高了2.09GPa,延伸率也没有降低,而是达到了50%左右。 合金的应力-应变曲线及与其他低温合金性能对比 ② 深冷变形机制演化 在变形机制方面,表现出了较强的温度依赖性,即不同温度下主导机制发生了一定的转变,室温下,合金的塑性变形主要依赖位错滑移及其交互作用,仅有少量纳米孪晶的形成。而在液氦温区,情况发生了变化,虽然位错滑移依然活跃,但产生了大量孪晶,这些孪晶成为强有力的障碍,增强了位错储存能力和应变硬化率,显著提高了材料的强度和延展性,研究团队将这一现象称为“动态Hall–Petch效应”。 不同温度下的位错与孪晶演化机制 ③ 抑制不连续塑性流动(DPF)的新机制 L12纳米析出相能够促进Hirth锁的形成,这种独特的位错锁定机制能够有效减少位错的“雪崩效应”和应力集中,显著降低DPF的发生概率,从而保证了材料在极端低温下的力学稳定性。 液氦温度下的DPF机理与位错-析出相相互作用 【总结与展望】 该研究证明了通过集成高晶格摩擦和相干L12纳米析出相可以在4.2K下实现超高强度和高延展性的优异性能组合,这一成果不仅解决了低温下强度与稳定性的权衡问题,而且为未来深冷工程、航天结构等极端环境应用提供了全新的合金设计思路和理论依据。
STLE Student Membership Now Available at No Cost 2025-09-11 Spread the love Students now have access to great industry resources and opportunities for free ; PARK RIDGE, Illinois, USA (September9, 2025);–;The Society of Tribologists and Lubrication Engineers (STLE);—;the premier technical society serving the needs of the tribology and lubrication engineering business sector;— announces a major update to help support the next generation of tribology and lubrication professionals.;STLE Student Membership;is now available for free. ; Becoming an STLE student member gives students access to industry resources, networking opportunities and career-boosting tools—all at no cost. Student members receive digital access to TLT magazine; discounted registration for select STLE conferences, webinars and events; access to the STLE Career Center and mentoring programs; networking opportunities with professionals and peers in the field; opportunities to get involved with STLE local sections and committees; and more. ; “We are happy to open the doors of STLE membership to students at no cost, empowering the next generation of tribology and lubrication professionals with greater access to resources, career development support and more,”;said Rebecca Lintow, CAE, STLE executive director. “By investing in students today, we’re building a stronger, more innovative future for our industry.” ; Students can join STLE or update their membership at;www.stle.org/joinnow.;New students will need to upload a copy of their current transcript to verify enrollment. ; About the Society of Tribologists & Lubrication Engineers (STLE) The;Society of Tribologists and Lubrication Engineers (STLE);is the premier technical society serving the needs of over 15,000 individuals and 200 companies and organizations that comprise the tribology and lubrication engineering business sector. STLE members are employed by the world’s leading corporations, academic institutions and governmental agencies dealing with science and technology. STLE supports these distinguished technical experts with various professional education and certification programs. STLE is a professional technical society providing robust resources in technical research, education and professional development delivered through programming, courses, events and periodicals on topics most important to you: safety, energy usage, maintenance, natural resources, wear and productivity. ; Tribological advancements can improve productivity, profitability, sustainability and safety across several industries, including manufacturing, metalworking, transportation and power energy.;Membership is available to those interested in staying current with the latest technologies, advancing their careers and making new professional connections worldwide.;STLE membership;is a low-cost investment with high professional rewards. For more information or to join today, visit;www.stle.org.
金属顶刊《Acta Materialia》通过回收粉末在增材制造的 316L 不锈钢中实现原位晶界工程 2025-09-09 ; 导读:晶界工程(GBE) 是一种成熟的微观结构设计策略,通过促进高比例的低能晶界 (GB)(例如;Σ3;边界)来改善多晶材料的机械性能并最大限度地降低腐蚀敏感性。传统的;GBE;利用复杂的机械变形和退火循环来设计金属和合金的微观结构,以释放这种优越的性能。然而,热机械加工不适用于增材制造 (AM) 生产的近净形状零件,因为它会不可逆转地改变其精密设计的几何形状。一种创新的解决方案是通过调节增材制造过程中的应变能来调整;GBE,以产生足够的再结晶驱动力。尽管如此,在增材制造微观结构中实现完全再结晶通常需要额外的增材制造后退火,这仍然耗时耗能。在这里,我们重点介绍了通过粉末回收直接在竣工的LPBF 316 L不锈钢中形成的类似GBE的微观结构,其特征是细晶粒和高密度的Σ3边界。我们认为,这是基于通过二十面体短程有序和改良的凝固途径直接从凝固液中成核孪生相关奥氏体晶粒,其中铁素体最初形成,随后经历大量转变为奥氏体。我们还展示了如何通过增材制造后退火通过原位GBE进一步改进这些完成的微观结构,从而实现额外的性能优化。我们新的原位增材制造GBE路线为使用回收粉末设计具有卓越性能的高性能金属增材制造部件铺平了道路。 晶界工程(GBE)是改善多晶材料力学性能最成功的微观结构设计策略之一。已建立的GBE方法涉及定制金属和合金晶界(GBs)的特性,通常通过热机械工艺引入大量低能GBs,例如Σ3边界(面心立方晶体中的孪晶。这种低能GB的高密度破坏了随机GB的网络,有效缓解了裂纹扩展、晶间腐蚀和氢脆等与GB相关的劣化现象.传统的GBE依赖于多次变形和退火循环,这既耗时又耗能,并且在产品体积和形状方面仍然受到限制。迄今为止,这些限制限制了GBE的可扩展性。 增材制造(AM)是一种先进的制造工艺,有助于快速生产具有复杂几何形状、卓越柔韧性和最小浪费的近净形部件,从而使其成为航空航天、生物医学和汽车等各个行业的金属部件制造的有吸引力的策略。.;使用316 L奥氏体级粉末的不锈钢产品由于其理想的机械性能和高耐腐蚀性,现在越来越多地通过激光粉末床熔融(LPBF)制造。传统的热机械加工不适用于增材制造零件,而不会对设计完整性产生不利影响。已经提出了几种解决方案来实现增材制造微观结构中的GBE,主要是通过在增材制造后退火过程中触发再结晶。这是可能的,因为LPBF固有的高度局部熔化和快速热循环会产生温度梯度的空间变化,进而引起相当大的热应变。这导致了高度非平衡微观结构的发展,其特点是金属和合金在竣工增材制造状态下存在高密度位错。这种高能微观结构构型可能会引发再结晶,而不需要外部机械变形。Gao等报道了对LPBF扫描策略的改进,以控制316 L不锈钢中的蜂窝凝固模式,从而改变AM后再结晶响应而不发生机械变形。抗再结晶的程度,称为“热稳定性”,与微观结构中细胞边界处的位错密度和微偏析有关,即,细胞边界处较高的位错密度和/或较低的溶质偏析导致较低的热稳定性。 在我们之前的研究中,我们系统地研究了LPBF 316 L不锈钢的微观结构和热稳定性随加工参数的变化,并报告了这些微观结构特征以及热稳定性,可以通过改变扫描速度、激光功率和扫描策略来控制。这提供了实现对完全或特定部位再结晶的控制的机会,而不涉及任何机械变形。然而,要实现增材制造微观结构的完全再结晶,通常需要在高同源温度下长时间退火。在这种情况下,再结晶通常具有低密度的位错,有时还会出现不理想的大晶粒。因此,GBE材料往往会同时错过应变硬化和GB硬化能力。机械强度的这种限制进一步限制了AM GBE策略的实际应用。因此,迫切需要新的策略来实现原位;GBE,而不会影响机械强度或需要后处理处理。 尽管金属增材制造具有优势,但其成本仍然很高,部分原因是金属粉末原料价格不断上涨。例如,对于不锈钢、钛和铝合金粉末,这些金属粉末原料的价格可能高达每公斤520美元。通常,在LPBF过程中,只有一小部分(10-20vol%)粉末原料被熔化并掺入实际制造的零件中。因此,回收未使用的粉末已成为降低原料费用的常见做法。Sartin等观察到,重复使用的316 L不锈钢粉末显示出明显更高的氧和氢成分。Heiden等报道说,重复使用的316 L粉末在回收30次后,表面氧含量增加,纳米级氧化物增加,零件密度略有降低,同时与新鲜粉末制成的样品相比,它保持了一致的屈服和极限拉伸强度。Delacroix等报告说,重复使用316 L粉末15次会导致粉末粒径和氧含量增加,粉末中铁素体相的比例更高,制备样品中的晶粒尺寸减小,同时保持与新鲜粉末相当的显微硬度和拉伸性能。 这些研究表明,重复使用的增材制造粉末通常不会显着改变最终的微观结构或损害制造部件的机械性能。尽管如此,关于如何系统地控制粉末回收以影响微观结构演变,特别是晶粒细化和孪晶边界形成,以提高机械性能,仍然存在重要问题。鉴于在重复使用的粉末中经常观察到显着的成分变化,这个问题变得尤为重要。对增材制造过程中有效粉末回收的深入了解,可以同时优化;GB;特性、增强机械性能并提高工艺可持续性,为增材制造过程中循环材料的使用提供了一条充满希望的途径。 在这项研究中,我们强调了在竣工的;316 L;不锈钢中形成的类似;GBE;的微观结构,其特点是晶粒细小,孪晶边界比例高。这是通过粉末回收实现的,粉末回收改变了粉末成分,无需机械变形或退火即可开发出如此精细的微观结构。由此产生的微观结构表现出优异的竣工机械性能,并通过后热处理为异地;GBE;提供了一个出色的起点,从而能够进一步定制微观结构和性能。我们展示了在LPBF过程中通过原位和异位GBE直接纵微观结构的能力,旨在实现优化的微观结构和增强的机械性能,同时也探索了推进增材制造中粉末回收的新机会。 相关研究以“Towards in-situ grain boundary engineering in additively manufactured stainless steel 316 L via reused powder”发表在Acta Materialia 链接: https://www.sciencedirect.com/science/article/pii/S1359645425006731 图1.概述;LPBF 316 L;不锈钢样品的 (a) 新鲜粉末与 (b) 重复使用粉末的;OM;图像。 图2.EBSD IPF(第一行)、重叠GB的图像质量图(第二行)、取向错误角度分布和相应的取向错误轴(第三行),显示了使用(a)新鲜粉末与(b)重复使用粉末的竣工样品的微观结构。在;GB;地图中,黑线表示;HAGB;(θ;> 15°),蓝线表示;LAGB;(θ ≤;15°),红线表示 Σ3;边界 (60°/<111>),黄线表示 Σ9;边界 (39°/<110>)。定向错误角度图中的虚线显示了定向错误角度的麦肯齐(随机)分布。 图3.LPBF 316 L在各种粉末条件下的显微结构特征,(a)图像质量图叠加GND密度,其中图中的数字显示了从多个图中计算出的平均GND密度,排除了GB,以及(b)来自蚀刻表面的SEM二次电子图像显示了细胞结构,图像中的数字表示来自不同图的细胞的平均直径。 图4蚀刻后的SEM图像揭示了使用(a)新鲜粉末和(b)重复使用粉末制造的LPBF 316 L不锈钢的结构差异。重复使用的粉末表面呈现出鱼鳞状结构,橙色箭头表示细胞结构,蓝色箭头突出显示没有这种结构的区域。 图5凝固细胞结构的STEM-HAADF;成像和相应的;EDS;图显示了 (a) 新鲜粉末和 (b) 重复使用的粉末样品中的元素分布。每个图中的线性剖面显示了跨单元边界的;Fe、Cr、Mo;和;Ni;的原子分数。HAADF;图像中的黑色箭头表示线扫描的位置,而重复使用的粉末样品的;HAADF;图像中的红色箭头标记氧化物的位置。 本研究引入了一种创新策略,利用回收的增材制造粉末在LPBF 316 L不锈钢中实现原位GBE,无需额外的机械变形和退火。与使用新鲜增材制造粉末构建的典型316 L柱状晶粒微观结构不同,回收粉末有助于形成具有高密度Σ3边界和GND的细晶粒微观结构。这是由于成分变化驱动的重复使用粉末中凝固途径的转变。其潜在机制归因于(i)ISRO(二十面体短程秩序)介导的成核和(ii)F/MA(铁素体凝固后大量转变为奥氏体)凝固模式的变化,这两者都对孪晶形成做出了重大贡献。 由此产生的重复使用的粉末微观结构表现出优异的机械性能,包括增强的屈服强度、拉伸强度和延展性。我们还表明,它是通过后热处理进行的异位;GBE;的优良起始微观结构,为设计微观结构和机械性能提供了进一步的机会。 我们的结果强调了使用回收增材制造粉末和在增材制造组件中实现卓越性能的综合优势。通过利用重复使用粉末的独特化学特性,能够以经济高效且可持续的方式直接生产复杂的高性能零件。基于增材制造的;GBE;代表了加速增材制造技术工业采用和推动材料工程进步的有前途的途径。
哈工大JMST新成果:Ti40Nb30V20Zr5Mo5轻质难熔高熵合金实现强塑性协同与高温强化 2025-09-09 ; 难熔高熵合金(RHEAs)和难熔复杂浓缩合金(RCCAs)因其高强度和耐高温性能而备受关注,但如何在轻量化的同时兼顾强度与塑性,并保持高温下的力学性能,一直是这一领域的瓶颈,Ti基RCCAs因其低密度和潜在的延展性,成为近年来的研究热点。 近日,哈尔滨工业大学团队联合中国科学院金属所,在《Journal of Materials Science & Technology》期刊在线发表了题为“Insights into multi-effects of single element Mo in Ti-rich Ti40Nb30V25−xZr5Mox;refractory complex concentrated alloys: Strength-ductility synergy and high-temperature strengthening”的研究论文,在这项研究中,团队为了在保持轻质化和良好延展性的前提下提升Ti基RCCAs合金的力学性能,通过单一元素Mo的精准调控来调节合金的原子应变场、位错行为与电子结构。论文通讯作者为哈尔滨工业大学安琦副教授和黄陆军教授。 文章链接: https://doi.org/10.1016/j.jmst.2025.07.052 【核心内容】 团队设计的Ti40Nb30V20Zr5Mo5合金在室温下表现出867MPa的屈服强度与26%左右的延伸率,并在1073K的高温下仍保持超过500MPa的抗拉强度,这样优异的性能组合来源于Mo的引入,团队发现,Mo能够显著增加晶格模量错配和不均匀原子应变场,同时促使位错在滑移过程中更易发生交滑移与缠结,最终表现为在合金内构建更为复杂的位错亚结构网络。 图形摘要 【研究方法】 团队通过真空电弧熔炼法熔炼纯度≥99.95 wt.%的Ti、Nb、V、Zr和Mo的金属颗粒以此制备Ti40Nb30V25−xZr5Mox;(x=0,3,5)合金,为了表征合金在高温条件下的力学性能变化,分别在室温与高温条件下进行拉伸试验,应变速率分别为5.6×10−4;s−1(室温)和1×10−3;s−1(高温),且测试均重复至少三次以保证可重复性,并使用纳米压痕机进行5×5压痕阵列的纳米压痕测试,结合DIC、SEM、EBSD、TEM以及CALPHAD相图计算与DFT模拟,深入揭示Mo在合金中的多重作用机制。 【研究成果】 ① 单相结构与微观特征 在引入Mo之后,合金依然保持单相体心立方结构,未观察到含Mo析出相,且随着含Mo量的增加,平均晶粒尺寸得到细化,Mo5(Ti40Nb30V20Zr5Mo5)的平均晶粒尺寸为16.6μm。 合金相图与稳定区间(CALPHAD计算结果) EBSD晶粒取向与相分布 ② Mo引入提升原子尺度应变场 Mo的加入引入的更大的原子应变,并使其分布趋于不均匀分布,使位错在滑移过程中受到更强阻碍,从而提升了合金的本征强度。 HRTEM与原子应变分布 ③ 室温力学性能:强度与延展性的协同提升 Mo元素的引入协同提升了合金的强塑性,Mo5在室温下的屈服强度比Mo0提高了20%,达到了867MPa,同时延伸率提高至25%左右,应变硬化速率稳定保持在约2GPa,Mo5在拉伸过程中应变分布更加均匀,相比Mo0有效延缓了局部颈缩的发生。 室温应力–应变曲线与应变硬化行为 DIC应变场分析 TEM变形亚结构 ④ 高温性能:轻质合金的优异强度保持能力 在高温下,密度仅6.4g/cm³的Mo5合金表现出优异的综合力学性能,在1073K时,抗拉强度仍可超过500MPa,这一性能表现优于传统钛合金和部分Ni基高温合金。 高温拉伸后显微组织演变 DFT计算的电子结构 Mo5与Ni基超合金、Ti合金、TiAl合金等的高温强度对比图 【总结与展望】 该研究开发出了一种新型的Ti40Nb30V20Zr5Mo5RCCA,该合金具有相对低的密度,在室温与高温条件均有优异的力学性能,这项研究为设计新型轻质耐高温结构材料提供了重要思路,未来有望在航空航天和能源装备领域发挥重要作用。
Friction Meets Precision: How Tribology Enhances the Performance of Servo Drive Systems 2025-09-09 Table of Contents What is tribology and why does it matter in motion control systems? What are servo drive systems and how do they work? How does friction affect the performance of servo drive systems? What role does lubrication play in servo motor efficiency and longevity? Which tribological factors are most critical in high-precision servo systems? How does tribology impact different servo drive components? What materials and coatings help optimize tribological performance in servo systems? What tribology-driven design tips can improve servo drive performance? How can engineers measure and model friction in servo applications? What are real-world benefits of tribological optimization in servo systems? What industries benefit most from tribology-enhanced servo performance? What are common tribological issues in servo systems—and how to solve them? What innovations are pushing the future of tribology in motion control? How can OEMs and system integrators apply tribology knowledge in practice? Conclusion Spread the love In the world of high-performance automation, where fractions of a millimeter define success, the hidden science of friction becomes a critical ally—or a costly enemy. Tribology, though often overlooked, plays a central role in how reliably and efficiently servo drive systems operate. When machines are tasked with ultra-precise movement, every source of resistance, wear, or instability becomes a limiting factor. Servo drive systems, the muscular backbone behind industrial robots, CNC machines, and factory automation, rely on mechanical perfection to achieve repeatable, accurate motion. But without attention to how surfaces interact, wear down, or transfer force, even the most advanced motion control systems can fall short. This article explores how tribology—the study of friction, lubrication, and wear—intersects with modern servo drive technology. You’ll see how applying its principles can dramatically improve motion stability, energy efficiency, and component lifespan. What is tribology and why does it matter in motion control systems? What is tribology? Tribology is the scientific study of friction, wear, and lubrication between interacting surfaces in relative motion. In the context of industrial automation, tribology focuses on understanding how components like bearings, shafts, and actuators slide, roll, and resist over time—often under high load and speed conditions. For servo-driven systems, tribology is particularly vital because these systems operate with demanding accuracy requirements. Inconsistent friction or material degradation can introduce small but critical errors in movement—errors that stack up rapidly in high-speed or repetitive operations. Core principles of tribology: Friction: The resistance encountered when two surfaces move against one another. Wear: The gradual removal or deformation of material due to mechanical action. Lubrication: The application of a substance to reduce friction and wear. Common surfaces and interactions studied in tribology: Metal-to-metal contact (e.g., shaft and bearing) Rolling contacts in ball screws or bearings Sliding interfaces in linear guides or gear trains Typical applications in automation: Robotic joint movement Linear motion systems High-speed rotary actuators Compact gear transmissions in servo assemblies What are servo drive systems and how do they work? A servo drive system is an electromechanical solution that delivers precise control of position, velocity, and torque. It works by receiving a command signal, amplifying it, and directing power to a servo motor, which then moves a mechanical load accordingly. The feedback loop continuously monitors motion to correct any deviation in real time. It’s important to distinguish between the servo drive, motor, and controller—terms often used interchangeably but with distinct roles. The servo controllers generate the command signal; the drive converts this signal into usable power; and the motor applies this power to the mechanical system. Components of a servo drive system: Servo motor – Executes motion Encoder – Measures position and speed Amplifier/Drive – Delivers voltage/current to the motor Motion controller – Defines motion profile Feedback loop – Maintains accuracy by closing the loop Common use cases: Robotics and automation arms CNC milling and turning centers Packaging lines and conveyors Semiconductor manufacturing equipment How does friction affect the performance of servo drive systems? Friction is a double-edged sword in motion control. While necessary to generate force and grip, uncontrolled friction—especially at low velocities—can create erratic movements, increase power demands, and prematurely degrade hardware. In servo systems, both static (breakaway) and dynamic (kinetic) friction must be tightly controlled. Too much friction can cause jitter, stiction, and vibration, particularly when the motor attempts micro-movements. Too little friction, on the other hand, can cause backlash or slippage, disrupting load transfer. Effects of excessive friction: Increased power consumption Reduced precision and repeatability Accelerated component wear Motor instability (especially at low speeds) Effects of too little friction: Backlash in gear trains Loss of motion control during direction reversals Load slippage, especially under varying torque What role does lubrication play in servo motor efficiency and longevity? Lubrication serves as a protective barrier between moving surfaces, minimizing direct contact, reducing heat, and prolonging component life. In high-speed or load-sensitive servo systems, the right lubricant can be the difference between stable motion and cascading failure. When under-lubricated, systems suffer from dry contact, leading to scoring, heat buildup, and wear. Over-lubrication, especially in sealed systems, can create drag or lead to fluid aeration, which reduces its effectiveness. Key lubrication functions: Reducing contact stress and surface fatigue Cooling components and dissipating frictional heat Preventing oxidation and corrosion in metallic parts Types of lubricants used in servo systems: Grease – Long-lasting, good for enclosed or low-maintenance setups Oil – Offers superior cooling but requires seals and circulation Dry lubricants – Ideal for high-vacuum or contaminant-sensitive environments Smart lubrication monitoring systems: Condition-based maintenance using sensors Predictive alerts for re-lubrication or component inspection Integration with control systems for real-time feedback Which tribological factors are most critical in high-precision servo systems? Surface roughness and contact geometry Surface finish can influence frictional behavior and vibration. In servo systems where even nanometers matter, smoother surfaces reduce micro-vibrations and facilitate stable motion. However, too smooth a surface can reduce lubricant adhesion, increasing the risk of metal-on-metal contact. Wear mechanisms and failure modes Different wear types affect different parts of the system. Adhesive wear occurs when two surfaces bond and tear apart; abrasive wear happens when harder particles scrape a softer surface; and fatigue wear results from repeated stress cycles. Common wear-prone components: Bearings (especially in high-load rotational motion) Gearheads (planetary and harmonic) Ball screws (precision linear motion systems) Linear guides (frequent in pick-and-place applications) Encoder shafts (subject to rotational stress and contamination) Coefficients of friction and their variability Material pairing and environmental conditions (humidity, temperature, contamination) dramatically affect friction coefficients. Designers must consider this when selecting components and lubricants to ensure performance remains within spec under all operating conditions. How does tribology impact different servo drive components? Bearings Bearings are the most tribologically sensitive elements in a servo system. Poor lubrication or contamination can cause pitting, vibration, and ultimately failure. Angular bearings handle axial loads, while radial bearings focus on lateral force—each with unique friction and wear behaviors. Gearboxes and gearheads Gear systems, especially planetary and harmonic types, are prone to thermal buildup due to internal friction. Tribological design helps reduce tooth wear, oil degradation, and heat generation—all of which impact repeatability and torque density. Motor shafts and couplings Shaft misalignment introduces off-axis forces, increasing friction and wear at coupling interfaces. Tribological attention here minimizes torsional vibration and ensures consistent torque transfer. Linear actuators and ball screws Backlash and stiction in linear systems are often tribological in nature. Precision-ground coatings, preloaded nuts, and advanced greases help maintain motion smoothness under varying loads. What materials and coatings help optimize tribological performance in servo systems? Common materials: Hardened steel (durable and fatigue-resistant) Ceramic-coated shafts (low wear, high hardness) PTFE-infused bushings (self-lubricating) Bronze sleeve bearings (good load capacity and embeddability) Common coatings and treatments: DLC (Diamond-Like Carbon): ultra-low friction, high hardness Nitriding: surface hardening for wear resistance Anodizing: protects aluminum parts from corrosion MoS₂ (Molybdenum Disulfide): dry lubricant for extreme conditions What tribology-driven design tips can improve servo drive performance? Tips for engineers and designers: Use preloaded bearings to minimize mechanical play Prefer rolling over sliding interfaces to reduce friction Design for thermal expansion to avoid binding or misalignment Select materials with similar wear rates to prevent dominance failure Avoid sharp corners that can cause local stress concentrations Integrate sensors to monitor lubrication condition and wear trends How can engineers measure and model friction in servo applications? Measurement techniques: Torque ripple analysis Strain or force sensors on load paths Vibration diagnostics to detect early wear Modeling approaches: Empirical: combining Coulomb and viscous friction models FEA (Finite Element Analysis) for detailed component stress mapping Real-time friction identification based on system feedback loops What are real-world benefits of tribological optimization in servo systems? Benefits include: Increased positional accuracy and repeatability Fewer maintenance interventions and lower lifecycle costs Extended bearing and gearbox lifespan Reduced motor load and lower energy usage Enhanced low-speed stability (crucial for robotics) Higher MTBF (Mean Time Between Failures) in mission-critical tasks What industries benefit most from tribology-enhanced servo performance? Industries and applications: Robotics: smoother motion, less joint backlash Semiconductors: sub-micron positioning with minimal vibration Medical devices: reliable, clean, and precise movement Aerospace: stable performance under extreme conditions Automotive: steer-by-wire, braking, and drive control systems Factory automation: rapid pick-and-place with low wear Defense: consistent targeting and stabilization platforms What are common tribological issues in servo systems—and how to solve them? Common issues: Bearing pitting Grease hardening Fretting corrosion Shaft scoring Stick-slip instability Solutions: Material upgrades (e.g., ceramic or coated components) Lubricant switching to match operating environment Surface treatments to reduce wear Alignment correction during assembly Adaptive tuning of motion profiles to minimize abrupt torque shifts What innovations are pushing the future of tribology in motion control? Emerging technologies: Self-lubricating composite materials AI-based condition monitoring for predictive service Nano-scale coatings for extreme environments Smart actuators with embedded wear sensors Digital twins simulating tribological behavior in real time How can OEMs and system integrators apply tribology knowledge in practice? Actionable strategies: Select components with tribological data in design specs Collaborate early with bearing and lubricant suppliers Include tribological simulations during prototyping Design maintenance schedules around friction and wear trends Specify coatings and materials based on operating loads, not just cost Conclusion Tribology is more than the science of reducing friction—it’s the hidden architecture behind precise, stable, and long-lasting motion. In servo drive systems, every movement depends on surface interaction, lubrication quality, and wear control. When engineers understand how tribological principles shape performance, they can unlock smoother starts, tighter tolerances, and longer-lasting automation. Ignore friction, and you’ll chase symptoms. Master it, and you’ll command motion.
Scripta Materialia:突破强塑性悖论!异质γ'析出相助力NiCoCr合金实现高强度与高延展性 2025-09-05 ; L12结构的γ'析出相一直在Ni基中熵合金和高熵合金设计中作为强化相存在,但这一优化策略在工程上距离实际应用还存在一些问题,其中较为关键的一个问题是,这些纳米析出物虽然能显著提升强度,但却因位错集中在局部滑移带而导致应变集中,不利于材料的塑性,因此如何在高强度的同时保持足够塑性,是利用γ'析出相优化Ni基中/高熵合金的一个关键挑战。 近日国际期刊《Scripta Materialia》在线发表了题为“Heterostructured γ' precipitates enable simultaneously high strength and ductility in a NiCoCr-based medium entropy alloy”的研究论文,在这项研究中,研究团队以在不牺牲塑性的前提下提升NiCoCr基中熵合金的力学性能,创新性地构建了大/小γ'析出物协同存在的异质结构,该策略突破了传统析出强化依赖单一粒度和体积分数的限制,为开发高强高延性合金提供了新思路。论文的通讯作者为南京理工大学张勇教授和香港城市大学朱运田院士。 文章链接: https://doi.org/10.1016/j.scriptamat.2025.116909 核心内容 团队设计了一种以NiCoCr为基体的MEA,成功在合金内构建了在尺寸层面异质化的γ′析出相,通过这一创新性策略克服了γ′析出相在提高Ni基中熵合金(MEA)强度的同时大幅降低合金塑性的局限性,团队研究发现较高比例的小尺寸γ′相与中等比例的大尺寸γ′相结合可以同时提高合金的强度和塑性,优化后的异质化γ′相组织能有效缓解均匀γ′强化合金中普遍存在的应变集中问题,并增强应变硬化的效果。 图形摘要 研究方法 该论文中的研究对象为Ni-24Co-17Cr-4Al-5Ti-1.7Mo-0.3W(at.%)合金,将NiCoCr样品分别在1030、1050、1070、1090 ℃下固溶处理4 h后风冷(分别命名为ST1030、ST1050、ST1070、ST1090),得到具有不同异质相的微观组织。随后,结合透射电镜(TEM)、扫描电镜(SEM)以及单轴拉伸与循环加载实验,系统揭示了异质γ'析出组织对合金力学性能及变形机制的影响。 研究成果速览 ① 显微组织的异质化调控 通过调节热处理温度,可以获得大/小两种尺寸的γ'析出相,在1030℃固溶处理时,大尺寸的γ'相约占19.7 vol.%,小尺寸γ'相约占17.1 vol.%,二者比例接近均衡,1050℃固溶处理时,大γ'相减少至14.4 vol.%,小γ'相则增加至23.6 vol.%,形成了双尺度组织,而在1090℃时,大γ'相几乎消失,由小γ'相占比34.7 vol.%为主导相,组织趋于单一化。 不同样品的暗场TEM图像和γ′尺寸分布 ② 强塑性的协同优化 随着大γ'相比例的降低,合金的屈服强度和抗拉强度逐渐下降,塑性则呈现出先升高后降低的趋势,因此需要在这这个过程中做一个均衡选择,团队发现,1050℃热处理样品展现出最佳的强塑性匹配,塑性大幅度提升的同时,强度仍能够保持较高的水平,其强塑性的性能组合优于大多数已报道的高/中熵合金,此时合金内大小尺寸的γ'体积比约为0.61。 NiCoCr合金力学性能的综合研究 NiCoCr合金力学性能的参数依赖关系 ③ 变形机制的本质解析 单一小γ'相主导的组织中,位错在局部高度集中,形成高密度位错趋于,诱发应变集中并导致塑性劣化。而在异质γ'组织中,位错在小γ'区域内均匀分布,并受到大γ'相的有效阻挡,从而引发位错堆积与多滑移系的激活,这种协同机制不仅抑制了应变集中,还促进了多方向滑移的发生,显著提升了应变硬化和整体塑性。 异质结构γ′析出相调控的位错滑移行为 总结与展望 在NiCoCr基中熵合金中通过合理调控不同尺寸的γ'析出相比例,可显著优化合金的强塑性,这一发现为γ'强化型Ni基中/高熵合金的设计提供了全新思路,也为航空航天、能源动力等领域对高性能结构材料的应用需求提供了坚实支撑。
刷新纪录!《Science》大子刊:3D打印钛合金全应力比疲劳强度全面优于所有金属材料 2025-09-02 ; 3D打印,又名增材制造(Additive manufacturing,AM),凭借在复杂金属构件上得天独厚的自由成形能力,极大地满足了新一代航空装备对轻量化、高集成度的重大需求,有望替代传统制造方法实现高端装备关键构件的智能制造。不过,这一巨大的应用前景长期以来受制于增材制造材料及构件普遍较差的疲劳性能。为解决3D打印材料抗疲劳的国际难题,2024年2月中国科学院金属研究所材料疲劳与断裂团队与钛合金团队合作提出了组织与缺陷耦合调控的NAMP工艺,成功制备出具有超高拉-拉疲劳性能的近无微孔3D打印Ti-6Al-4V合金材料(Nature,2024),突破所有材料拉-拉比疲劳强度世界纪录,更新了人们以往对3D打印材料疲劳性能不高的固有认识。 然而,实际工程构件的服役环境一般非常复杂,常常伴随着加载应力比的显著变化。当材料或构件所承受的外部应力比变化时,循环应力幅值和最大应力的分配比例也随之改变,进而诱发不同疲劳开裂机制之间的转变。这种“此消彼长”的开裂规律使得传统钛合金组织难以在全应力比范围内均保持优异的疲劳性能,一种显微组织类型往往仅在特定应力比范围内表现出抗疲劳优势(图1)。尤其是对于具有复杂结构的增材制造构件,其实际服役过程中的应力分布更为复杂,不可避免地会承受具有多变应力比的疲劳载荷。因此,如何实现全应力比条件下的高抗疲劳能力是决定增材制造技术能否在航空航天等领域规模化应用的关键,也是亟待解决的科学难题之一。 针对新的挑战,材料疲劳与断裂研究团队最近系统揭示了钛合金易发生疲劳开裂的三类典型“疲劳短板”及其应力比敏感区间,发现无微孔净增材制造(Net-AM)组织可实现三类疲劳短板的协同优化。据此,团队明确提出:3D打印钛合金在全应力比条件下仍具有天然高的抗疲劳特性。基于团队前期原创的NAMP工艺,制备出近似无微孔的Net-AM组织Ti-6Al-4V合金,并对其在不同应力比条件下的疲劳强度(图1)和疲劳开裂机制(图2)进行了表征。大量数据对比分析表明:在全应力比范围内,Net-AM组织Ti-6Al-4V合金的疲劳强度不但整体优于所有钛合金材料,同时其比疲劳强度(疲劳强度除以密度)也全面优于所有金属材料,如图3所示。 该研究结果于2025年8月22日以题为“Naturally high fatigue performance of a 3D printing titanium alloy across all stress ratios”(“3D打印钛合金在全应力比条件下天然高疲劳性能”)发表于《科学进展》(Science Advances)杂志上,中国科学院金属研究所特别研究助理曲展博士为论文第一作者,张振军研究员、刘睿副研究员、张哲峰研究员为论文共同通讯作者。这一成果揭示了增材制造技术制备的具有复杂拓扑结构、承受复杂载荷钛合金构件在抗疲劳方面的天然优势,为其在航空航天等领域作为动载承力构件应用奠定基础。同时,该研究也为锻造钛合金不同应力比下的疲劳性能优化设计提供了新的思路。 该项研究得到了国家自然科学创新研究群体项目(52321001)、优秀青年基金项目(52322105)、重点项目(52130002)及中国科学院青促会项目(2021192)的资助。 图1.;不同显微组织类型的Ti-6Al-4V合金在不同应力比条件下的疲劳强度及对应的疲劳开裂机制。 图2.  Net-AM组织Ti-6Al-4V合金在不同应力比下的典型疲劳断口和对应的疲劳裂纹萌生机制。(A)应力比R=-1:微孔缺陷开裂;(B)应力比R=-0.5:微孔缺陷开裂;(C)应力比R=0.1:微孔缺陷开裂和显微组织开裂共存;(D)应力比R=0.5:显微组织开裂;(E)应力比变化,Net-AM组织Ti-6Al-4V合金疲劳裂纹萌生位置转变及其对应的疲劳强度变化示意图。 图3.;与其他Ti-6Al-4V合金和常见的金属结构材料相比,Net-AM组织Ti-6Al-4V合金在不同应力比下的疲劳强度分布。(A)应力幅vs平均应力;(B)材料密度归一化的疲劳强度vs材料密度归一化的平均应力。
STLE Brings Tribology & Lubrication for E-Mobility Conference to Michigan November 19-21 2025-09-01 Spread the love This event provides tribology and lubrication engineering enthusiasts with the latest in e-mobility technology PARK RIDGE, Illinois, USA (August 26, 2025);─ The Society of Tribologists and Lubrication Engineers (STLE) — the technical society for individuals in the field of tribology and lubrication engineering — is hosting;the;2025 Tribology & Lubrication for E-Mobility Conference;on;November 19-21 at the Detroit Marriott Troy in Troy, Michigan.;Registration is now open for the conference. This event will;explore the latest technical challenges and commercial opportunities that will impact the future of electric vehicle technology. Topic areas include electric vehicle hardware, electric vehicle drivetrain efficiency, lubricant formulation, sustainable mobility and electrification.;There are two new technical tracks on the program: Test Methods and Tribological Development and Battery and Charging Hardware. “The 2025 Tribology & Lubrication for E-Mobility Conference brings together industry leaders, researchers and innovators to address the evolving demands of e-mobility technology,” said Rebecca Lintow, CAE, STLE executive director. “With new technical tracks focused on battery systems and testing methods, this year’s program reflects the rapid pace of innovation and the growing need for high-performance solutions. STLE is proud to provide a platform where science and industry intersect to shape the future of mobility.” Attendees of last year’s event were primarily working in research and development or product design, engineering,;and technical services, with the remaining made up of a diverse group of chemists, government researchers, lubricant end-users, sales;and marketing representatives, and more. The conference is located in the Detroit area, which is central to many original equipment manufacturers (OEMs). The keynote speakers include: Mike Bunce, Dumarey USA Peter Björklund, Traton Sweden AB Dr. Felix Leach, University of Oxford For more information on the event, visit;www.stle.org/EMobility. ; About the Society of Tribologists & Lubrication Engineers (STLE) The;Society of Tribologists and Lubrication Engineers (STLE);is the premier technical society serving the needs of over 15,000 individuals and 200 companies and organizations that comprise the tribology and lubrication engineering business sector. STLE members are employed by the world’s leading corporations, academic institutions and governmental agencies dealing with science and technology. STLE supports these distinguished technical experts with various professional education and certification programs. STLE is a professional technical society providing robust resources in technical research, education and professional development delivered through programming, courses, events and periodicals on topics most important to you: safety, energy usage, maintenance, natural resources, wear and productivity. Tribological advancements can improve productivity, profitability, sustainability and safety across several industries, including manufacturing, metalworking, transportation and power energy.;Membership is available to those interested in staying current with the latest technologies, advancing their careers and making new professional connections worldwide.;STLE membership;is a low-cost investment with high professional rewards. For more information or to join today, visit;www.stle.org. ### Media Contact:;Rachel Fowler |+1 847-993-7959;|;
Advancements in Biotribology 2025-08-26 Table of Contents Introduction Advancements in new biocompatible materials Conclusion Reference Spread the love Introduction There has been a significant progress in the field of biotribology and material design for biomedical devices. However, the challenges remain in ensuring effective interaction with the human body. Advanced materials offer benefits like biocompatibility and antimicrobial properties, and are used as coatings, composite fillers, or fluid additives to improve strength and wear resistance. However, each application method involves its unique challenges, such as interface issues with fillers, wear concerns with coatings, and potential toxicity from fluid additives. Hence further innovation is needed to overcome these limitations and optimize device performance. Advancements in new biocompatible materials Graphene based materials Graphene-based materials, especially graphene oxide (GO) and reduced graphene oxide (rGO), are gaining attention in biotribology for their exceptional wear resistance and low friction. GO can reduce wear by up to 48% compared to traditional materials and shows a very low coefficient of friction (COF) under dry conditions. With a Young’s modulus of up to 1 TPa, graphene is ideal for load-bearing applications. However, differences in oxidation and surface functionalization affect biocompatibility and tribological performance, leading to varied results across studies. The improved tribological properties of graphene-based materials stem from their layered structure, which enables easy interlayer sliding and reduces friction and wear. Graphene coatings on metal implants can decrease wear by up to 50%. However, achieving uniform distribution and strong adhesion of graphene fillers in composites remains a challenge, affecting their overall mechanical strength and wear resistance. Molybdenum disulphide and tungsten disulphide Molybdenum disulfide (MoS₂) and tungsten disulfide (WS₂) are effective solid lubricants in biomedical applications due to their layered structures, which enable low friction and high wear resistance. MoS₂ has a COF between 0.02 and 0.05, while WS₂ can achieve COFs as low as 0.03. Both materials offer strong load-bearing capabilities, with MoS₂ films enduring pressures up to 1.5 GPa. However, their long-term biocompatibility and stability in the body require further investigation. Hydrogels Hydrogels, particularly poly (vinyl alcohol) (PVA)-based types, are effective in reducing friction and wear between joint surfaces, acting as lubricants with controlled-release properties. They can achieve extremely low COF (as low as 0.005) and reduce wear by up to 80% compared to traditional materials. Hydrogels also exhibit beneficial traits like self-healing and minimal immune response to wear debris. However, challenges include mechanical weakening due to swelling under load and increased wear (up to 25%) in poor lubrication conditions, highlighting the need for further optimization for long-term joint replacement use. ultra-high molecular weight polyethylene Ultra-high molecular weight polyethylene (UHMWPE) significantly enhances its biotribological performance when incorporated with vitamin E. Both blending and diffusion methods have been shown to reduce wear by over 90% and greatly improve oxidative stability. Studies report substantial reductions in wear rates, coefficients of friction (up to 88%), and subsurface crack propagation. Vitamin E acts as a free radical scavenger, increasing implant longevity by at least 40% and enhancing mechanical strength without compromising wear resistance. These innovations establish vitamin E-infused UHMWPE as a promising next-generation material for durable, high-performance biomedical implants. Conclusion Future biotribology research should prioritize replicating natural bodily conditions and developing cost-effective, patient-specific medical devices, especially for younger, active individuals. Innovations like in vitro testing platforms, 3D bioprinted tissues, and computational models using FEA and machine learning are enhancing predictions of wear and improving implant design. Understanding in vivo lubrication through biphasic models and joint simulators is key to improving implant durability. Advanced materials such as PVA-hybrid gels, ECM scaffolds, and coatings like DLC are promising for reducing wear and enhancing performance. Ongoing research into novel materials like vitamin E-infused UHMWPE, black phosphorus, and MXenes, is essential for the future of biotribological advancements. Reference [1] Verma, S., Sharma, N., Kango, S. and Sharma, S., 2025. Biotribological Characteristics of Cutting-Edge Materials in Medical Applications: A Review. Transactions of the Indian Institute of Metals, 78(2), pp.1-18. [2] Marian, M., Berman, D., Nečas, D., Emami, N., Ruggiero, A. and Rosenkranz, A., 2022. Roadmap for 2D materials in biotribological/biomedical applications–A review.;Advances in Colloid and Interface Science,;307, p.102747.
三院士领衔《PNAS》!10分钟打造强塑双优的异质结构合金,颠覆传统加工范式 2025-08-19 ; 实现高强度与高延展性的协同突破一直是结构材料设计的核心挑战。对于含有脆性金属间化合物的多主元合金(MPEAs),强-塑性难以兼得常受限于B2相的早期脆断行为。尽管前人通过引入纳米析出相或梯度结构等方式实现局部改善,但往往面临处理复杂、成本高昂、难以规模化等问题,尤其在存在脆性金属间相的高熵或多主元合金(MPEAs)体系中,强-塑性权衡问题尤为突出。 由上海大学时培建教授为第一兼通讯,香港城市大学刘锦川院士,清华大学高华健院士、香港城市大学朱运田院士和上海大学钟云波教授为通讯作者,以及北京大学、北京科学智能研究院、新加坡科技研究局高性能计算研究院、香港大学与香港科技大学等多家重磅单位的研究人员,强强联合组成的豪华团队,在《PNAS》期刊发表了题为“Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement”的研究论文,该工作创新性提出了一种基于组织继承与快速热处理的层级异质结构设计策略,在仅需10分钟退火的条件下,即实现了超越以往复杂处理工艺的强度-延展性协同性能极限,为高性能结构材料的快速制备提供了新的范式。 文章链接: https://doi.org/10.1073/pnas.2409317121 【核心内容】 这项研究通过简单的冷轧和10min退火的方法在三相Al0.7CoCrFeNi多主元合金中制备出了层级异质层片结构(HLS),团队提出的这一优化方案相较于其他方案,无论是工艺简易程度亦或是成本上都要更加出色,且这一优化策略取得了显著的成果,屈服强度和延伸率分别提升到了1.07GPa和20.5%,实现了力学性能跨越式的优化,将这一性能组合与已被报道的Al0.7CoCrFeNi性能组合对比,取得了明显的优势,就目前而言,这一“强-塑组合”超过了目前关于Al0.7CoCrFeNi多主元合金的其他性能组合报道。 高熵合金应力演化与相变的多方法定量评价 【研究方法】 作为典型的三相多主元合金体系之一的Al0.7CoCrFeNi合金,其在铸态下会在自发形成FCC/BCC/B2三相层片结构,团队将这一结构特征作为结构基础,采用定向冷轧工艺使原始的层片结构沿轧制方向(RD)拉伸并在厚度方向(TD)实现晶粒细化和亚结构的引入。轧制后的样品在1000℃下退火10min后内部发生再结晶,得到了一种多尺度协同存在的HLS结构。 作者采用了多种表征手段对样品的晶体取向、晶界特征、元素分布以及原子尺度的析出行为和应力分布进行了系统分析,揭示了微观组织演变及其对性能的影响,通过加载-卸载-再加载(LUR)实验和原位SHE-XRD测量定量追踪了异质变形诱导(HDI)应力的演化和各相之间的应力分配关系,进一步揭示了其强化机制。 铸态与处理后Al0.7CoCrFeNi合金的多尺度层片结构演化过程 【研究成果】 ① 力学性能提升 该合金在退火仅10分钟后就表现出了1072±22MPa的超高屈服强度和20.5±1.2%的优异延伸率,力学性能显著优于目前已报道的该体系合金最优异的性能水平。 不同处理路径合金的力学性能对比与应力-应变曲线 ② 强化与变形机制解析 HLS结构中产生了高达610MPa的异质变形诱导(HDI)应力,不仅在FCC相中形成大量位错堆积、层错与纳米孪晶,更在B2相中激发出<111>型滑移系,显著改善了其本征脆性问题,这种多尺度和多机制的协同作用共同赋予了材料的高应变硬化能力和塑性。作者基于第一性原理计算还证实了该合金体系中FCC相的层错能高达3 mJ/m²,理论上并不容易发生孪生,但由于高HDI应力的推动,仍成功激发了大规模的纳米孪晶行为。 层级结构高熵合金的多相缺陷协同演化机制 层级高熵合金多尺度缺陷结构与双相变形耦合机制 ③ 额外韧化机制:裂纹缓冲与延迟断裂 HLS结构中双相层片协同塑性变形形成了有效的裂纹缓冲区,即使在B2相中能够观察到在断裂端附近存在许多的微裂纹,但其强双相异质变形的片层区可以有效地抑制从相邻的弱片层区和非片层区侵入的一些较大且较长的裂纹的生长/扩展,裂纹尖端被层片结构阻挡而难以扩展或聚合,从而显著推迟了整体破坏的发生。 铸态与处理后样品中微裂纹形成与扩展行为对比 【总结与展望】 在这项工作中,团队提出了一种微观结构的多尺度设计策略,其创新性地以“继承”的方式,基于铸态的三相层状结构进行精准调控,通过快速且简单的工艺方案成功实现了高强高塑的协同突破,这一项研究不仅仅刷新了关于Al0.7CoCrFeNi;MPEA体系报道的力学性能上限,也为其他多相合金体系提供了结构优化的思路。
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共793条,80页
qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

学科视频

More >

会议报道

More >

研究进展

More >

润滑百科

More >

热点排行