Current-carrying sliding tests of sintered Cu/Graphite composite were conducted at 80 A and 20 m/s. The dynamic variation of arc discharge captured by a high speed camera revealed a migrating behavior of arc discharges along the sliding direction, and this, in turn, caused an aggravated erosion of worn surface, as consistently proved by SEM, EDS and 3D characterizations. Based on the erosion mechanism, arc discharge induced material erosion could be alleviated by various means, including inhibiting migration of arcs by proper surface modification and employing functionally gradient materials (from mechanical wear resistant to arc discharge erosion resistant) in current-carrying sliding conditions. (C) 2015 Published by Elsevier Ltd.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn