We used the COMPASS forcefield to perform molecular dynamics (MD) simulation of a mixture composed of three alkanes as the lubricant for the thin-film lubrication. The viscosity of the lubrication film in the non-working state, the final film thickness, and density distribution were investigated. The results reveal that the viscosity error among different initial film thicknesses in the non-working state is within 5%, which confirms the applicability of the model and the forcefield. The viscosity decreases oscillating as temperature increases. Whatever the initial film thickness is, the film thickness change rate with respect to pressure load is almost the same. When pressure increases, the density peaks increase. As the initial film thickness increases, the normalized thicknesses of adsorption and ordered layers decrease. In nanoscale, the density predicted by the MD simulation is higher than the prediction of the Tait equation, even if the adsorption layers is excluded.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn