A Comparative Analysis of the Lubricating Performance of an Eco-Friendly Lubricant vs Mineral Oil in a Metallic System

Abstract : Eco-friendly lubricant research continues to increase since it has a comparative performance to commercial mineral lubricants to overcome the effects of environmental impact. However, the efficiency of these green lubricants depends on specific applications. In this study, we analyzed the friction and wear performance of a castor/sesame oil mixture as an eco-friendly lubricant and its comparison to a commercial mineral lubricant tested in a metallic system employed in bearing elements. For this purpose, AISI 8620 steel against ISO 100Cr6 was used as tribological pair. The friction and wear tests were carried out through a Tribometer of ball-on-disk configuration under boundary lubricating conditions, whereas the worn surfaces were investigated by using optical and electron microscopy. The physical properties and the rheological properties of the lubricants were also determined. The friction and wear performance between the eco-friendly lubricant and mineral oil were similar so that the CLE were comparable. The CLE values in terms of friction and wear ranged from 86% to 99.4%, respectively. Keywords: bio-lubricant; friction; wear; lubricant efficiency; bearing steel Abstract : Eco-friendly lubricant research continues to increase since it has a comparative performance to commercial mineral lubricants to overcome the effects of environmental impact. However, the efficiency of these green lubricants depends on specific applications. In this study, we analyzed the friction and wear performance of a castor/sesame oil mixture as an eco-friendly lubricant and its comparison to a commercial mineral lubricant tested in a metallic system employed in bearing elements. For this purpose, AISI 8620 steel against ISO 100Cr6 was used as tribological pair. The friction and wear tests were carried out through a Tribometer of ball-on-disk configuration under boundary lubricating conditions, whereas the worn surfaces were investigated by using optical and electron microscopy. The physical properties and the rheological properties of the lubricants were also determined. The friction and wear performance between the eco-friendly lubricant and mineral oil were similar so that the CLE were comparable. The CLE values in terms of friction and wear ranged from 86% to 99.4%, respectively. Keywords: bio-lubricant; friction; wear; lubricant efficiency; bearing steel Abstract : Eco-friendly lubricant research continues to increase since it has a comparative performance to commercial mineral lubricants to overcome the effects of environmental impact. However, the efficiency of these green lubricants depends on specific applications. In this study, we analyzed the friction and wear performance of a castor/sesame oil mixture as an eco-friendly lubricant and its comparison to a commercial mineral lubricant tested in a metallic system employed in bearing elements. For this purpose, AISI 8620 steel against ISO 100Cr6 was used as tribological pair. The friction and wear tests were carried out through a Tribometer of ball-on-disk configuration under boundary lubricating conditions, whereas the worn surfaces were investigated by using optical and electron microscopy. The physical properties and the rheological properties of the lubricants were also determined. The friction and wear performance between the eco-friendly lubricant and mineral oil were similar so that the CLE were comparable. The CLE values in terms of friction and wear ranged from 86% to 99.4%, respectively. Keywords: bio-lubricant; friction; wear; lubricant efficiency; bearing steel Eco-friendly lubricant research continues to increase since it has a comparative performance to commercial mineral lubricants to overcome the effects of environmental impact. However, the efficiency of these green lubricants depends on specific applications. In this study, we analyzed the friction and wear performance of a castor/sesame oil mixture as an eco-friendly lubricant and its comparison to a commercial mineral lubricant tested in a metallic system employed in bearing elements. For this purpose, AISI 8620 steel against ISO 100Cr6 was used as tribological pair. The friction and wear tests were carried out through a Tribometer of ball-on-disk configuration under boundary lubricating conditions, whereas the worn surfaces were investigated by using optical and electron microscopy. The physical properties and the rheological properties of the lubricants were also determined. The friction and wear performance between the eco-friendly lubricant and mineral oil were similar so that the CLE were comparable. The CLE values in terms of friction and wear ranged from 86% to 99.4%, respectively. Keywords: bio-lubricant; friction; wear; lubricant efficiency; bearing steel Keywords: bio-lubricant; friction; wear; lubricant efficiency; bearing steel Keywords:

相关文章

  • Evaluation of Aromatic Organic Compounds as Additives on the Lubrication Properties of Castor Oil
    [José E. Báez, Luis Daniel Aguilera-Camacho, Karla J. Moreno, María Teresa Hernández-Sierra, J. Santos García-Miranda]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集