Water-Resistant Conductive Gels toward Underwater Wearable Sensing

Conductive gels are developing vigorously as superior wearable sensing materials due to their intrinsic conductivity, softness, stretchability, and biocompatibility, showing a great potential in many aspects of lives. However, compared to their wide application on land, it is significant yet rather challenging for traditional conductive gels to realize sensing application under water. The swelling of gels and the loss of conductive components in the aqueous environment, resulted from the diffusion across the interface, lead to structural instability and sensing performance decline. Fortunately, great efforts are devoted to improving the water resistance of conductive gels and employing them in the field of underwater wearable sensing in recent years, and some exciting achievements are obtained, which are of great significance for promoting the safety and efficiency of underwater activities. However, there is no review to thoroughly summarize the underwater sensing application of conductive gels. This review presents a brief overview of the representative design strategies for developing water-resistant conductive gels and their diversified applications in the underwater sensing field as wearable sensors. Finally, the ongoing challenges for further developing water-resistant conductive gels for underwater wearable sensing are also discussed along with recommendations for the future.

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集