Durable Radiative Cooling Multilayer Silk Textile with Excellent Comprehensive Performance

Passive radiative cooling without energy consumption is increasingly being explored as an eco-friendly alternative to electric cooling for mitigating heat stress caused by global warming. Incorporating radiative cooling into personal thermal management has garnered widespread interest. However, existing sub-ambient radiative cooling textiles face challenges related to inferior solar reflectance, poor outdoor durability, or health concerns. Here, a durable multilayer silk textile (MST) is developed that achieves excellent comprehensive performance for the first time, including both ultrahigh solar reflectance (96.5%) and ultrahigh infrared emittance (97.1%), safety, air and moisture permeability, high mechanical strength, washability, abrasion resistance, surface hydrophobicity, and UV resistance. The MST achieves a remarkable sub-ambient temperature drop of 5.1 °C under 892.4 W m−2 of ultra-strong solar radiation and surpasses both commercial silk and cotton textiles at noon with temperature reductions of 6.0 and 8.3 °C, respectively. For proof of concept, a hat using the MST is fabricated, which shows improved cooling performance compared to commercial hats. Considering its outstanding cooling performance, durability, zero energy consumption, abundant raw materials, and scalable production ability, it is believed that the radiative cooling MST holds great promise for practical applications in daytime personal thermal management.

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集