A novel copper surface modification approach based on pinless friction stir surface processing technique with ultra-low heat input

Improving the wear and corrosion performances of widely employed copper and its alloy components can effectively extend their service life. In this study, a novel copper surface modification method based on the friction stir surface processing (FSSP) technique was achieved. Subject to FSSP with pinless tool and low heat-input process parameters (including a minimal axis tilt and extremely low rotational speed), the modified copper surface exhibited enhancement rates of 34.25 % in hardness and 44.76 % in tensile strength, and improved high wear and corrosion resistance characteristics. The research suggests that the primary reasons for the enhanced surface properties are the grain refinement strengthening effect and the rapid formation of a passive film. Additionally, the ultra-low heat input resulted in the preservation of numerous dislocation tangles and incomplete dynamic recrystallization in the modified region, which represented a microstructural evolution mechanism distinct from the traditional friction stir processing. This work provides a reference for a low-energy-consumption and easily achievable approach for enhancing the surface properties of metals.

相关文章

  • Compression-Durable Soft Electronic Circuits Enabled by Embedding Self-Healing Biphasic Liquid-Solid Metal Into Microstructured Elastomeric Channels
    [Xiaoliang Chen, Bing Wang, Jiankang Duan, Bo Yang, Liang Wang, Sheng Li, Yizhuo Luo, Sihai Luo, Bai Sun, Chunhui Wang, Hongmiao Tian, Xiangming Li, Jian Lv, Jinyou Shao]
  • Textile-Based TENG Woven with Fluorinated Polyimide Yarns for Motion and Position Monitoring
    [Ming Hao, Xiaodong Hu, Zhijun Chen, Bo Yang, Yanan Liu, Qiang Wang, Xinyu Gao, Yanbo Liu, Xiaoxiao Wang, Yong Liu]
  • Textile-Based TENG Woven with Fluorinated Polyimide Yarns for Motion and Position Monitoring
    [Ming Hao, Xiaodong Hu, Zhijun Chen, Bo Yang, Yanan Liu, Qiang Wang, Xinyu Gao, Yanbo Liu, Xiaoxiao Wang, Yong Liu]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集