Extremely compact and lightweight triboelectric nanogenerator for spacecraft flywheel system health monitoring

The abnormal state of supporting bearings significantly affects the directional accuracy of spacecraft flywheel systems. A self-sensing triboelectric nanogenerator (TENG) offers a desirable route for on-orbit health monitoring and can potentially improve the intelligence level of spacecraft. Here, an extremely compact and lightweight TENG (CL-TENG) for the nonguided clearance of bearings is proposed and fabricated for the condition monitoring of a flywheel assembly. Using the bearing radial space allows the CL-TENG to perceive the revolution and whirling behavior of the cage; therefore, the output of the CL-TENG is simultaneously affected by the bearing speed and load. A test platform for capturing the kinematic of the cage is established to validate the effectiveness of the CL-TENG based on bearing skidding, cage rotation, and whirling instability. A negative exponential correlation between the output voltage and dynamic whirling clearance index is shown to be the basis of cage whirling sensing. The internal clearance and materials of the CL-TENG are optimized to enhance the output performance while preventing wear on the flexible electrodes. The application of the CL-TENG to an actual flywheel system in a simulated space environment and nonstationary operating conditions demonstrate its advantages in detecting the abnormal operating state of the cage.

相关文章

  • Pore size control and tribological properties of oil-impregnated porous polyimide with similar porosity
    [Zhengrong Xu, Jinbang Li, Kai Li, Chenchun Shi, Yuguo Cui, Ningning Zhou, Licheng Hua, Renliang Xia, Tao Qing]
  • Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity
    [Qiwei Zheng, Liming Xin, Qin Zhang, Fan Shen, Xiao Lu, Chen Cao, Chuanfu Xin, Yang Zhao, Heming Liu, Yan Peng, Jun Luo, Hengyu Guo, Zhongjie Li]
  • Leech-Inspired Amphibious Soft Robot Driven by High-Voltage Triboelectricity
    [Qiwei Zheng, Liming Xin, Qin Zhang, Fan Shen, Xiao Lu, Chen Cao, Chuanfu Xin, Yang Zhao, Heming Liu, Yan Peng, Jun Luo, Hengyu Guo, Zhongjie Li]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集