Strength Enhancement of Laser Powder Bed Fusion 316L by Addition of Nano TiC Particles

316L stainless steel is widely used in various industrial fields, but its strength is relatively low. The improvement of its strength has become a research hotspot. In this study, nano titanium carbide (TiC) particles are ball milled with 316L with the addition of 2 wt% and 4 wt%. The composite powder was then used for the fabrication of samples by laser powder bed fusion. The results show that the TiC is uniformly distributed in the microstructure. With the addition of TiC, the average size of the grains is significantly reduced. The strength, hardness, and wear resistance of TiC/316L samples have been greatly improved. The tensile strength of formed 2 wt% TiC/316L is 948 MPa, together with a extension rate of 36.0%, which has been increased by 42.6% and 79.7%, respectively. This study provides an effective way to improve the strength at room temperature and the high temperature of 316L built by laser powder bed fusion. Abstract 316L stainless steel is widely used in various industrial fields, but its strength is relatively low. The improvement of its strength has become a research hotspot. In this study, nano titanium carbide (TiC) particles are ball milled with 316L with the addition of 2 wt% and 4 wt%. The composite powder was then used for the fabrication of samples by laser powder bed fusion. The results show that the TiC is uniformly distributed in the microstructure. With the addition of TiC, the average size of the grains is significantly reduced. The strength, hardness, and wear resistance of TiC/316L samples have been greatly improved. The tensile strength of formed 2 wt% TiC/316L is 948 MPa, together with a extension rate of 36.0%, which has been increased by 42.6% and 79.7%, respectively. This study provides an effective way to improve the strength at room temperature and the high temperature of 316L built by laser powder bed fusion. Keywords: 316L; laser powder bed fusion; TiC; mechanical property; high temperature property

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

润滑集