In situ probing of electron transfer at the dynamic MoS2/Graphene-water interface for modulating boundary slip

The boundary slip condition is pivotal for nanoscale fluid motion. Recent research has primarily focused on simulating the interaction mechanism between the electronic structure of two-dimensional materials and slip of water at the nanoscale, raising the possibility for ultralow friction flow of water at the nanoscale. However, experimentally elucidating electronic interactions at the dynamic solid-liquid interface to control boundary slip poses a significant challenge. In this study, the crucial role of electron structures at the dynamic solid-liquid interface in regulating slip length was revealed. Notably, the slip length of water on the molybdenum disulfide/graphene (MoS2/G) heterostructure (100.9 ± 3.6 nm) significantly exceeded that of either graphene (27.7 ± 2.2 nm) or MoS2 (5.7 ± 3.1 nm) alone. It was also analyzed how electron transfer significantly affected interface interactions. Excess electrons played a crucial role in determining the type and proportion of excitons at both MoS2-water and MoS2/G-water interfaces. Additionally, by applying voltage, distinct photoluminescence (PL) responses at static and dynamic interfaces were discovered, achieving a 5-fold modulation in PL intensity and a 2-fold modulation in the trion to exciton intensity ratio. More electrons transfer from the top graphene to the bottom MoS2 at the MoS2/G-water interface, reducing surface charge density. Thus, the reduction of electrostatic interactions between the solid and water leads to an increased slip length of water on the MoS2/G heterostructure. The process aids in comprehending the origin of frictional resistance at the subatomic scale. This work establishes a foundation for actively controlling and designing of fluid transport at the nanoscale.

相关文章

  • Interlayer phononic energy dissipation in the friction of graphene layers
    [Haolei Dai, Yujin Wang, Zibo Liu, Yonghui Liu, Yuzheng Guo, Dameng Liu]
  • Friction Tuning of Interlayer Exciton Recombination in Van der Waals Heterostructures
    [Zejun Sun, Puyu Ge, Shihong Chen, Shuchun Huang, Haowen Xu, Chong Wang, Rui Han, Xiushuo Zhang, Huixian Liu, Jianbin Luo, Linmao Qian, Junhui Sun, Dameng Liu, Huan Liu]
  • The Induced Orientation of Hydroxypropyl Methylcellulose Coating for Ultralow Wear
    [Huan Liu, Dameng Liu, Haosheng Pang, Jianxun Xu, Xuan Yin, Wenjuan Wang, Bing Zhang]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集