7-Series aluminum (Al) alloys have been widely used in aircraft and high-speed train manufacturing owing to its excellent mechanical properties and fracture toughness. However, surface problems of corrosion, wear and fatigue failure of Al alloy parts seriously affect the service life. In the present study, the noncontact laser shock peening (LSP) was applied to improve the fatigue life of the substrate before the coating deposited by cold spraying (CS). The effect of LSP on the interfacial bonding behavior between CS Al with 50 vol.% Al2O3 composite coatings and 7075 Al alloy substrate was comprehensively investigated. Results showed that after LSP treatment, the tensile strength is reduced from 47 to 34 MPa and 32 MPa when the laser shock energy was 2 and 3 J, respectively. Under the condition of shear strength, it decreases from 41.5 to 30 MPa and 26 MPa, respectively. In addition, numerical simulations were conducted on LSP and CS processes, and the results showed that with the increase of laser shock energy, the plastic deformation dissipation energy of Al particles increases gradually, while the plastic deformation dissipation energy of the matrix decreased. Therefore, the surface hardening caused by LSP treatment is the main reason for the decrease of interfacial bonding strength.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn