Liquid Metal-Based Self-Healing Conductors for Flexible and Stretchable Electronics

Flexible and stretchable electronics rely on compliant conductors as essential building materials. However, these materials are susceptible to wear and tear, leading to degradation over time. In response to this concern, self-healing conductors have been developed to prolong the lifespan of functional devices. These conductors can autonomously restore their properties following damage. Conventional self-healing conductors typically comprise solid conductive fillers and healing agents dispersed within polymer matrices. However, the solid additives increase the stiffness and reduce the stretchability of the resulting composites. There is growing interest in utilizing gallium-based liquid metal alloys due to their exceptional electrical conductivity and liquid-phase deformability. These liquid metals are considered attractive candidates for developing compliant conductors capable of automatic recovery. This perspective delves into the rapidly advancing field of liquid metal-based self-healing conductors, exploring their design, fabrication, and critical applications. Furthermore, this article also addresses the current challenges and future directions in this active area of research.

相关文章

  • Thermally Stable Cellulose-Based Triboelectric Nanogenerators with Ultrahigh Charge Density Enabled by Deep Traps and Multiple Noncovalent Interactions
    [Feijie Wang, Yueming Hu, Chao Jia, Suyang Wang, Hao Wang, Yichi Liu, Shiqiang Ouyang, Shenzhuo Zhang, Shufeng Ma, Zhen Wu, Liqiang Wang]
  • Atomic-engineered gradient tunable solid-state metamaterials
    [Meltem Yilmaz, Libo Cheng, Bin Feng, Yuichi Ikuhara, Chuchu Yang, Naoya Shibata, Xinbin Cheng, Rong Zhao, Hao Wang, Albertus Denny Handoko, Cheng-Wei Qiu, Joel K. W. Yang, Zhiyuan Yan, Chong Tow Chong, Ghim Wei Ho, Zhiyong Zhang, Weikang Wu]
  • Layer-by-Layer Assembled Graphene Oxide on Carbon Fiber toward Phosphate Bonded Coatings with Excellent Interfacial Bond and Tribological Performance
    [Yong Lin, Da Bian, Zifeng Ni, Shanhua Qian, Yongwu Zhao, Min Sun]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集