Synergistic Effects of Surface Texture and Cryogenic Treatment on the Tribological Performance of Aluminum Alloy Surfaces

In order to improve the tribological properties of the 7075-T6 aluminum alloy used on the rotor surface, a combined method of cryogenic treatment and laser surface texture treatment was applied. Various tests, including metallographic microscopy, scanning electron microscopy, elemental analysis, microhardness measurements, were conducted to examine the wear morphology and modification mechanism of the treated 7075-T6 aluminum alloy surface. A numerical simulation model of surface texture was established using computational fluid dynamics to analyze the lubrication characteristics of V-shaped texture. The research finding that the 7075-T6 aluminum alloy experienced grain refinement during the cryogenic treatment process, enhancing the wear resistance of the V-shaped textures. This improvement delayed the progression of fatigue wear, abrasive wear, and oxidative wear, thereby reducing friction losses. The designed V-shaped texture contributes to reducing contact area, facilitating the capture and retention of abrasives, and enhancing oil film load-bearing capacity, thereby improving tribological performance. The synergistic effect of cryogenic treatment reduced the friction coefficient by 24.8% and the wear loss by 66.4%. Thus, the combination of surface texture and cryogenic treatment significantly improved the tribological properties of the 7075-T6 aluminum alloy.

相关文章

  • Research on the sealing performance of cylindrical gas film seal with different unequal depth parallel grooves
    [Xinchen Fu, Wenyuan Mao, Hengjie Xu, Qiangguo Deng, Xuejian Sun]
  • Superhydrophobic and Self-Healing Porous Organic Macrocycle Crystals for Methane Purification under Humid Conditions
    [Zeju Wang, Li Zhao, Zhenguo Zhang, Xinru Sheng, Hanlin Yue, Rui Liu, Zhongwen Liu, Yating Li, Li Shao, Yun−Lei Peng, Bin Hua, Feihe Huang]
  • Superhydrophobic and Self-Healing Porous Organic Macrocycle Crystals for Methane Purification under Humid Conditions
    [Zeju Wang, Li Zhao, Zhenguo Zhang, Xinru Sheng, Hanlin Yue, Rui Liu, Zhongwen Liu, Yating Li, Li Shao, Yun−Lei Peng, Bin Hua, Feihe Huang]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集