Triboelectric Programmed Droplet Manipulation for Plug-and-Play Assembly

Programmed droplet transport which is typically directed by surface energy gradients or external fields, is crucial in domains ranging from chemical reaction modulation to self-powered intelligent sensing. However, droplet motion control remains constrained by path reconfiguration, requirements on chemical surface modification, and platform complexity. Here, a more universal plug-and-play droplet manipulation paradigm based on liquid-solid contact electrification and triboelectricwetting on common dielectric surfaces is reported. By regulating the electrical double layer via asymmetric ion dynamics, the triboelectric charge polarity of droplets can be adjusted, enabling in situ manipulation without path reconfiguration dictated by the conventional droplet motion output. Droplets achieved an ultrahigh velocity of 450 mm s−1 on general surfaces, significantly exceeding the speeds observed in droplets subjected to constant electrostatic fields with chemical modifications. This flexible and modular functionally decoupled manipulation strategy offers an environmentally friendly, cost-effective, and versatile paradigm, facilitating applications in chemical analysis and smart sensing.

相关文章

  • Engineering Triboelectric Paper for Energy Harvesting and Smart Sensing
    [Renyun Zhang, Dabo Chen, Magnus Hummelgård, Nicklas Blomquist, Christina Dahlström, Wenshuai Chen, Jiayong Li, Jonas Örtegren, Zhong Lin Wang]
  • Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education
    [Huijing Xiang, Lin Peng, Qiuxiang Yang, Zhong Lin Wang, Xia Cao]
  • Nonaqueous Contact-Electro-Chemistry via Triboelectric Charge
    [Jiajin Liu, Zhe Yang, Shaoxin Li, Yan Du, Zhiwei Zhang, Jiajia Shao, Morten Willatzen, Zhong Lin Wang, Di Wei]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集