Understanding and Passivation of Surface Corrosion of Cu for Stable Low-N/P-Ratio Lithium-Sulfur Battery

The realization of a low negative/positive capacity (N/P) ratio is essential for attaining high energy density in lithium-sulfur batteries (LSBs). However, it has been challenging to maintain the stability of the Li metal anode at low N/P ratios. Herein, it is revealed that the corrosion of the Cu current collector by dissolved intermediates of polysulfides -a largely overlooked perspective- significantly contributes to the instability of Li metal anode at low N/P ratios. The reduced Li/Li+ redox rates on the corroded Cu surface result in uneven and porous Li deposits that severely deteriorate cycling stability. To address this issue, an anti-corrosion alloy coating is developed to passivate the Cu surface against polysulfides. LSBs with passivated current collectors at a low N/P ratio (1.5) and lean electrolyte (5 µL mgs −1) show a ten fold extension in cycle and calendar life. This study not only provides the initial evidence of the impact of Cu corrosion on the failure mechanism of low N/P ratio LSBs but also proposes a practical yet effective strategy to stabilize high-energy-density LSBs.

相关文章

  • Multifunctional Tribovoltaic Coating for Self-Powered In Situ Sensing with Exceptional Tribological Robustness and Charge Transport
    [Song Wang, Zhi Zhang, Chang Sun, Likun Gong, Xiantao Zhang, Shuai Gao, Chi Zhang, Qinkai Han, Shaoze Yan]
  • Entropy-Assisted Flexible Nanofibrous Dielectrics Enable High-performance Strain Sensing
    [Lvye Dou, Xianglei Pu, Bingbing Yang, Chi Zhang, Yujun Zhang, Wei Xu, Lei Li, Jianqiang Li, Hui Wu, Ce-Wen Nan, Yuan-Hua Lin]
  • Self-powered electrotactile textile haptic glove for enhanced human-machine interface
    [Guoqiang Xu, Haoyu Wang, Guangyao Zhao, Jingjing Fu, Kuanming Yao, Shengxin Jia, Rui Shi, Xingcan Huang, Pengcheng Wu, Jiyu Li, Binbin Zhang, Chun Ki Yiu, Zhihao Zhou, Chaojie Chen, Xinyuan Li, Zhengchun Peng, Yunlong Zi, Zijian Zheng, Xinge Yu]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集