Use of Image Recognition and Machine Learning for the Automatic and Objective Evaluation of Standstill Marks on Rolling Bearings

One main research area of the Competence Centre for Tribology is so-called standstill marks (SSMs) at roller bearings that occur if the bearing is exposed to vibrations or performs just micromovements. SSMs obtained from experiments are usually photographed, evaluated and manually categorized into six classes. An internal project has now investigated the extent to which this evaluation can be automated and objectified. Images of standstill marks were classified using convolutional neural networks that were implemented with the deep learning library Pytorch. With basic convolutional neural networks, an accuracy of 70.19% for the classification of all six classes and 83.65% for the classification of pairwise classes was achieved. Classification accuracies were improved by image augmentation and transfer learning with pre-trained convolutional neural networks. Overall, an accuracy of 83.65% for the classification of all six standstill mark classes and 91.35% for the classification of pairwise classes was achieved. Since 16 individual marks are generated per test run in a typical quasi standstill test (QSST) of the CCT and the deviation in the prediction of the classification is a maximum of one school grade, the accuracy achieved is already sufficient to carry out a reliable and objective evaluation of the markings.

相关文章

  • Practical Evaluation of Ionic Liquids for Application as Lubricants in Cleanrooms and under Vacuum Conditions
    [Alexander Epp, Christian Goehringer, Andreas Keller, Fabian Schüler, Markus Grebe, Knud-Ole Karlson]
  • Oscillating rolling element bearings: A review of tribotesting and analysis approaches
    [Román de la Presilla, Sebastian Wandel, Matthias Stammler, Markus Grebe, Gerhard Poll, Sergei Glavatskih]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集