Artificial Intelligence in Metamaterial Informatics for Sonic Frequency Mechanical Identification Tags

Designing mechanical metamaterials to control wave propagation often requires extensive finite element analysis and discrete Fourier transform simulations before fabricating 3D printed structures and conducting experiments. Here, an alternative approach is presented to developing a metamaterial informatics framework by integrating dataset collection with artificial intelligence (AI), which can significantly accelerate the advancement of phononic wave chip technologies based on the triply periodic minimal surface (TPMS). Visualized data analysis is performed to evaluate the sensitivity of phononic band frequency numbers (BNF). Subsequently, various machine learning algorithms are compared for the prediction of sonic BNFs to create a unique identificable encoded mechanical identification tag (EMIT) interacting with sound waves. Then, for the mechanical decoding part with the help of acoustic analogy, a novel concept technology is developed that integrates 3D-printed EMITs with a deep-learning audio classifier for the ownership identification of instruments. Underwater application is discussed further for civil accident investigations, such as echolocating missing aircraft, divers, sunken ships, and containers with valuable cargo. These TPMS-based EMITs represent the first-generation passive sonic frequency identification (SFID) transponder-tags, marking the advent of SFID transponder systems.

相关文章

  • Influence of MXene Composition on Triboelectricity of MXene-Alginate Nanocomposites
    [Bernd Wicklein, Geetha Valurouthu, HongYeon Yoon, Hyunjoon Yoo, Sathiyanathan Ponnan, Manmatha Mahato, Jiseok Kim, Syed Sheraz Ali, Jeong Young Park, Yury Gogotsi, Il-Kwon Oh]
  • Easy-To-Wear Auxetic SMA Knot-Architecture for Spatiotemporal and Multimodal Haptic Feedbacks
    [Saewoong Oh, Tae-Eun Song, Manmatha Mahato, Ji-Seok Kim, Hyunjoon Yoo, Myung-Joon Lee, Mannan Khan, Woon-Hong Yeo, Il-Kwon Oh]
  • Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications
    [Dongwhi Choi, Younghoon Lee, Zong-Hong Lin, Sumin Cho, Miso Kim, Chi Kit Ao, Siowling Soh, Changwan Sohn, Chang Kyu Jeong, Jeongwan Lee, Minbaek Lee, Seungah Lee, Jungho Ryu, Parag Parashar, Yujang Cho, Jaewan Ahn, Il-Doo Kim, Feng Jiang, Pooi See Lee, Gaurav Khandelwal, Sang-Jae Kim, Hyun Soo Kim, Hyun-Cheol Song, Minje Kim, Junghyo Nah, Wook Kim, Habtamu Gebeyehu Menge, Yong Tae Park, Wei Xu, Jianhua Hao, Hyosik Park, Ju-Hyuck Lee, Dong-Min Lee, Sang-Woo Kim, Ji Young Park, Haixia Zhang, Yunlong Zi, Ru Guo, Jia Cheng, Ze Yang, Yannan Xie, Sangmin Lee, Jihoon Chung, Il-Kwon Oh, Ji-Seok Kim, Tinghai Cheng, Qi Gao, Gang Cheng, Guangqin Gu, Minseob Shim, Jeehoon Jung, Changwoo Yun, Chi Zhang, Guoxu Liu, Yufeng Chen, Suhan Kim, Xiangyu Chen, Jun Hu, Xiong Pu, Zi Hao Guo, Xudong Wang, Jun Chen, Xiao Xiao, Xing Xie, Mourin Jarin, Hulin Zhang, Ying-Chih Lai, Tianyiyi He, Hakjeong Kim, Inkyu Park, Junseong Ahn, Nghia Dinh Huynh, Ya Yang, Zhong Lin Wang, Jeong Min Baik, Dukhyun Choi]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集