Layered two-dimensional nanomaterials such as graphene and WS2, possess superlubricity properties and thus offer a promising solution to mitigate friction and wear in micro-electromechanical systems. In this study, the atomic friction properties of graphene/graphene, WS2/WS2, and graphene/WS2 bilayer heterostructure systems were examined through density functional theory simulations. Results indicated that the friction strength of the graphene/WS2 bilayer heterostructure system was lower than that of the graphene/graphene and WS2/WS2 systems. Specifically, the graphene/WS2 bilayer heterostructure system demonstrated ultra-low friction coefficients ranging from 0.0006 to 0.0096, resulting in friction strengths in the range of 10^−3 nN. Furthermore, the heightened electrostatic repulsion and smooth potential energy fluctuation helped reduce friction, validating the superlubricity performance of the graphene/WS2 heterostructure system.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn