Machine Learning-Driven Optimization of Micro-Textured Surfaces for Enhanced Tribological Performance: A Comparative Analysis of Predictive Models

Micro-textured surfaces show promise in improving tribological properties, but predicting their performance remains challenging due to complex relationships between surface features and frictional behavior. This study evaluates five algorithms—linear regression, decision tree, gradient boosting, support vector machine, and neural network—for their ability to predict load-carrying capacity and friction force based on texture parameters including depth, side length, surface ratio, and shape. The neural network model demonstrated superior performance, achieving the lowest MAE (24.01) and highest R-squared value (0.99) for friction force prediction. The results highlight the potential of machine learning techniques to enhance the understanding and prediction of friction-reducing micro-textures, contributing to the development of more efficient and durable tribological systems in industrial applications.

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集