Perovskite in Triboelectric Nanogenerator and the Hybrid Energy Collection System

In the context of escalating energy demands and environmental sustainability, the paradigm of global energy systems is undergoing a transformative shift to innovative and reliable energy-harvesting techniques ranging from solar cells to triboelectric nanogenerators (TENGs) to hybrid energy systems, where a fever in the study of perovskite materials has been set off due to the excellent optoelectronic properties and defect tolerance features. This review begins with the basic properties of perovskite materials and the fundamentals of TENGs, including their working principles and general developing strategy, then delves into the key role of perovskite materials in promoting TENG-based hybrid technologies in terms of energy conversion. While spotlighting the coupling of triboelectric–optoelectronic effects in harnessing energy from a variety of sources, thereby transcending the limitations inherent to single-source energy systems, this review pays special attention to the strategic incorporation of perovskite materials into TENGs and TENG-based energy converting systems, which heralds a new frontier in enhancing efficiency, stability, and adaptability. At the end, this review highlights the remaining challenges such as stability, efficiency, and functionality for applications in TENG-based energy-harvesting systems, aiming to provide a comprehensive overview of the current landscape and the prospective trajectory of the role of perovskite materials in TENG-based energy-harvesting technologies within the renewable energy sector. Abstract : In the context of escalating energy demands and environmental sustainability, the paradigm of global energy systems is undergoing a transformative shift to innovative and reliable energy-harvesting techniques ranging from solar cells to triboelectric nanogenerators (TENGs) to hybrid energy systems, where a fever in the study of perovskite materials has been set off due to the excellent optoelectronic properties and defect tolerance features. This review begins with the basic properties of perovskite materials and the fundamentals of TENGs, including their working principles and general developing strategy, then delves into the key role of perovskite materials in promoting TENG-based hybrid technologies in terms of energy conversion. While spotlighting the coupling of triboelectric–optoelectronic effects in harnessing energy from a variety of sources, thereby transcending the limitations inherent to single-source energy systems, this review pays special attention to the strategic incorporation of perovskite materials into TENGs and TENG-based energy converting systems, which heralds a new frontier in enhancing efficiency, stability, and adaptability. At the end, this review highlights the remaining challenges such as stability, efficiency, and functionality for applications in TENG-based energy-harvesting systems, aiming to provide a comprehensive overview of the current landscape and the prospective trajectory of the role of perovskite materials in TENG-based energy-harvesting technologies within the renewable energy sector. Keywords: triboelectric nanogenerators; perovskite materials; optoelectronic properties; energy conversion

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集