Study on the Effect of Laser Power on the Microstructure and Properties of Cladding Stellite 12 Coatings on H13 Steel

To address the issue of cracking in aluminum extrusion dies during operation, this study employs laser cladding technology to modify the surface of these dies. This modification aims to enhance their hardness and friction resistance. Laser cladding technology was utilized to coat the surface of H13 steel with Stellite 12, a cobalt-based alloy, at varying laser power levels. The surface formation quality, microstructural organization, phase composition, microhardness, and wear resistance of the coatings were investigated using optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction (XRD), microhardness testing, and confocal microscopy. The results indicated that as the laser power increased, the surface formation quality of the coating gradually improved, while the dilution rate of the coating increased. Changes in the phase composition and microstructure were not significant, and both microhardness and wear resistance initially increased before decreasing. Optimal process parameters for achieving good surface formation quality, high microhardness, and strong wear resistance were found to be a laser output power of 2200 W, scanning speed of 10 mm/s, feeding rate of 1.2 r/min, and overlap rate of 40%. The results indicate that the coating applied to the surface of H13 steel using Stellite 12 enhances the performance of aluminum extrusion dies. Abstract To address the issue of cracking in aluminum extrusion dies during operation, this study employs laser cladding technology to modify the surface of these dies. This modification aims to enhance their hardness and friction resistance. Laser cladding technology was utilized to coat the surface of H13 steel with Stellite 12, a cobalt-based alloy, at varying laser power levels. The surface formation quality, microstructural organization, phase composition, microhardness, and wear resistance of the coatings were investigated using optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction (XRD), microhardness testing, and confocal microscopy. The results indicated that as the laser power increased, the surface formation quality of the coating gradually improved, while the dilution rate of the coating increased. Changes in the phase composition and microstructure were not significant, and both microhardness and wear resistance initially increased before decreasing. Optimal process parameters for achieving good surface formation quality, high microhardness, and strong wear resistance were found to be a laser output power of 2200 W, scanning speed of 10 mm/s, feeding rate of 1.2 r/min, and overlap rate of 40%. The results indicate that the coating applied to the surface of H13 steel using Stellite 12 enhances the performance of aluminum extrusion dies. Keywords: laser cladding; Stellite 12 alloy; H13 mold steel; microstructure; wear resistance

相关文章

  • Mechanically Robust Triboelectric Aerogels Enabled by Dense Bridging of MXene
    [Chenchen Cai, Lixin Zhang, Xiangjiang Meng, Bin Luo, Yanhua Liu, Mingchao Chi, Jinlong Wang, Tao Liu, Song Zhang, Shuangfei Wang, Shuangxi Nie]
  • Strong and Stable Woody Triboelectric Materials Enabled by Biphase Blocking
    [Cong Gao, Jiamin Zhao, Tao Liu, Bin Luo, Mingchao Chi, Song Zhang, Chenchen Cai, Jinlong Wang, Yanhua Liu, Yuzheng Shao, Guoli Du, Chengrong Qin, Shuangxi Nie]
  • A Pulsed Bubble-Driven Efficient Liquid-Solid Triboelectric Nanogenerator
    [Tao Liu, Xue Cui, Ziyi Ye, Xuedi Li, Yanhua Liu, Bin Luo, Song Zhang, Mingchao Chi, Jinlong Wang, Chenchen Cai, Yayu Bai, Shuangfei Wang, Shuangxi Nie]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集