2D MoS 2 with narrow lateral size and thickness distributions was introduced to promote the anti-friction and anti-wear properties of the bentonite grease (BG) in a state of boundary lubrication. Optical microscopy (OM), and 3D optical profilers (3D OP), Raman spectrometry (Raman), scanning electron microscope, energy dispersion spectrum (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were applied to characterize the wear surface of the GCr15 bearing steel/GCr15 bearing steel contact. It is found that the average friction coefficient (AFC), wear scar diameter (WSD), surface roughness and average wear scar depth of BG + 1.2 wt.% 2D MoS 2 were effectively reduced by approximately 22.15%, 23.14%, 55.15%, and 21.1%, respectilvely, compared with BG under the working condition of 392N, 75 °C, 1 h, and 1200 rpm. Raman, EDS and XPS results jointly demonstrated that a stable adsorbed film and a robust tribochemical film composed of Fe 2O 3, FeSO 4, Fe 2(SO 4) 3, FeSO 3, FeS, FeO and MoO 3, which further contributes to the enhancement of lubrication performance.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn