Efficient Output and Stability Triboelectric Materials Enabled by High Deep Trap Density

With the increasing global focus on sustainable materials, paper is favored for its biodegradability and low cost. Their integration with triboelectric nanogenerators (TENGs) establishes broad prospects for self-powered, paper-based triboelectric materials. However, these materials inherently lack efficient charge storage structures, leading to rapid charge dissipation. This study introduced a paper-based triboelectric material with efficient charge storage using deep traps assembled by a hydrogen bonds strategy. Compared to pure paper, the material increased the deep trap density by ∼54 times, with an ∼10 times higher dielectric constant at high frequency. TENG based on the material had a peak output power density ∼45 times higher than paper-based TENG and maintained a stable voltage after 20,000 cycles. It also shows exceptional environmental stability and practicality with minimal voltage reduction in heat environments. This offers a practical and effective solution for powering and sustaining small electronic devices under extreme conditions.

相关文章

  • Lightweight and Mechanically Robust Cellulosic Triboelectric Materials for Wearable Self-Powered Rehabilitation Training
    [Chenchen Cai, Tao Liu, Xiangjiang Meng, Bin Luo, Mingchao Chi, Jinlong Wang, Yanhua Liu, Song Zhang, Cong Gao, Yayu Bai, Shuangfei Wang, Shuangxi Nie]
  • Efficient Output and Stability Triboelectric Materials Enabled by High Deep Trap Density
    [Yaqi Zhang, Juanxia He, Yu Gao, Bei Xu, Jianfeng Li, Kun Liu, Shuangxi Nie, Shuangfei Wang, Qingshan Duan, Dongwu Liang]
  • Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation
    [Peng Lu, Yang Yang, Bin Luo, Chenchen Cai, Tao Liu, Song Zhang, Mingchao Chi, Tong Zhao, Jinlong Wang, Xiangjiang Meng, Yayu Bai, Yuzheng Shao, Guoli Du, Shuangfei Wang, Shuangxi Nie]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集