High-Accuracy Liquid Flow Monitoring via Triboelectric Nanogenerator Combined with Bionic Design and Common-Mode Interference Suppression

In the development of smart cities, accurate liquid flow monitoring is essential for the efficient operation of water supply systems. Current flow sensors often face limitations in sensitivity and environmental adaptability, affecting measurement accuracy, and restricting their application in smart city infrastructure. To address these challenges, this study proposes a high-accuracy flow monitoring method. Specifically, by combining the bionic design with advanced signal processing techniques, the sensitivity and anti-interference ability are improved, respectively, to enhance the measurement accuracy. Based on this method, a self-powered flow sensor (SPFS) is developed using noncontact triboelectric nanogenerators (NC-TENGs) as the sensing unit. The SPFS achieves a sensitivity of 2.07 Hz L−1 min−1 and improves the signal-to-noise ratio by more than 13 times over the initial sensing signal. In addition, an intelligent system is developed to accurately measure water resources. The maximum flow rate error rate is less than 0.97% compared to commercial flow sensors. The SPFS demonstrates higher sensitivity and accuracy compared to the existing TENG flow sensors. This study addresses the limitations of existing flow sensors and pioneers a novel solution for enhanced water resource management in smart cities.

相关文章

  • Boosting the irregular wave energy harvesting performance of oscillating float-type TENGs via staggered alignment pairing-induced current superposition
    [Xianggang Dai, Long Qi, Shiyuan Chang, Qinghe Wu, Xiaobo Wu, Zhanyong Hong, Tao Jiang, Zhong Lin Wang]
  • MXene-Reinforced Spiral Yarns for Multimodal Triboelectric Nanogenerators and Wearable Interactive Interfaces
    [Soo Young Cho, Yao Xiong, Haishuang Jiao, Dong Hae Ho, Jiahong Yang, Chao Liu, Seonkwon Kim, Liang Wei, Zhong Lin Wang, Qijun Sun, Jeong Ho Cho]
  • A Multifunctional Power Textile Based on Interfacial Electrostatic Breakdown
    [Lixia He, Yikui Gao, Shuncheng Yao, Di Liu, Xiang Zhang, Tianmei Lv, Linlin Li, Baofeng Zhang, Zhong Lin Wang, Jie Wang]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集