Harnessing Machine Learning to Predict MoS2 Solid Lubricant Performance

Physical vapor deposited (PVD) molybdenum disulfide (MoS2) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure–property relationships for molybdenum disulfide (MoS2) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.

相关文章

  • Microstructural Assessment of Molybdenum Disulfide Coatings Using Nanoindentation Hardness
    [Tomas F. Babuska, Alexander Mings, Steven R. Larson, Michael T. Dugger, Mark A. Rodriguez, John F. Curry]
  • Microstructural Assessment of Molybdenum Disulfide Coatings Using Nanoindentation Hardness
    [Tomas F. Babuska, Alexander Mings, Steven R. Larson, Michael T. Dugger, Mark A. Rodriguez, John F. Curry]
  • Electrodeposited MoxSyOz/Ni Tribological Coatings
    [Tomas F. Babuska, Christopher L. Reed, Dhego Banga, Steven R. Larson, Alexander Mings, John F. Curry, Michael T. Dugger]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集