Improved Analytical model for mesh stiffness of helical gears considering the relationship of friction and flash temperature under steady temperature field

In the transmission process, thermal deformation of gears due to external factors, coupled with the thermal expansion of the tooth profile induced by flash temperature from surface friction, significantly impacts the time-varying mesh stiffness (TVMS) characteristics. Therefore, this paper proposes a novel analytical model for the TVMS of helical gears that considers these factors. In this model, the thermal deformation of gear foundation under a bulk temperature field is first determined using the displacement method. Blok's theory is then applied to establish the relationship between tooth surface friction and flash temperature, leading to the derivation of the actual tooth profile expansion equation under steady-state conditions. After that, based on this equation and considering the friction force in tangential, radial, and axial directions, the gear tooth and foundation stiffness of helical gear in transverse and axial directions under steady-state temperature field are accurately established. Finally, the proposed model is obtained by coupling each stiffness. By comparing with the FE result, the model is validated, and the influence of friction coefficient, bulk temperature, and gear parameters on TVMS is studied. The analytical model and findings provide valuable insights for optimizing gear parameter design.

相关文章

  • Synergistic methodology for studying the lubrication process of kinematic nodes
    [Daria Skonieczna Corresponding Author, Oleksandr Vrublevskyi Corresponding Author, Piotr Szczyglak Corresponding Author, Jerzy Napiórkowski Corresponding Author]
  • Wear and lubrication behavior of Cu-based clutch containing Cu@C particles: numerical and experimental studies
    [Yi Dong Corresponding Author, Biao Ma Corresponding Author, Cenbo Xiong Corresponding Author, Haoran Chen Corresponding Author, Qin Zhao Corresponding Author]
  • Investigation of Low Temperature Tribological Behavior of Multi-layer a-C:H Coatings Deposited on 5A06 Aluminum Alloy
    [Hui Zhang Corresponding Author, Lei Ruan Corresponding Author, Tao Ye Corresponding Author, Guan-lin Li Corresponding Author, Jian-wei Ma Corresponding Author, Qing-long Liu Corresponding Author]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集