Universal Analysis Method for Metamaterial-Based Wireless Power Transfer with Arbitrary Energy Source Waveforms: Application to Triboelectric Nanogenerators

Metamaterial-based wireless power transfer (MM-WPT) analysis has attracted substantial attention due to its great application potential. However, traditional MM-WPT analysis is constrained by frequency domain approaches which are suitable only for infinitely extended periodic signals or fixed-frequency sine waves but not suitable for complex waveforms of various energy sources. This paper presents an innovative time-domain system analysis method for MM-WPT systems tailored to evaluate energy sources with arbitrary waveforms. The foundation of the method is to use the unit impulse response. By convolving this impulse response with any type of excitation source, a temporal waveform of the voltage across the system’s load can be obtained. It has demonstrated a high degree of correlation and agreement between theoretical calculations and experimental results for various input waveforms, affirming its validity, precision, and universality. Based on the framework, it is shown that triboelectric nanogenerators can efficiently self-powered transfer wireless energy through MM-WPT systems. Experiments reveal that the energy received is up to 59.6 times higher compared with that of WPT systems without metamaterials. When this system is applied in an implant, it demonstrates a remarkable energy transfer efficiency of 51% through biological tissues. These findings represent a significant breakthrough in optimizing WPT systems for compact and efficient self-powered energy applications.

相关文章

  • Multifunctional Tribovoltaic Coating for Self-Powered In Situ Sensing with Exceptional Tribological Robustness and Charge Transport
    [Song Wang, Zhi Zhang, Chang Sun, Likun Gong, Xiantao Zhang, Shuai Gao, Chi Zhang, Qinkai Han, Shaoze Yan]
  • Entropy-Assisted Flexible Nanofibrous Dielectrics Enable High-performance Strain Sensing
    [Lvye Dou, Xianglei Pu, Bingbing Yang, Chi Zhang, Yujun Zhang, Wei Xu, Lei Li, Jianqiang Li, Hui Wu, Ce-Wen Nan, Yuan-Hua Lin]
  • Ultrahigh-Current-Density Tribovoltaic Nanogenerators Based on Hydrogen Bond-Activated Flexible Organic Semiconductor Textiles
    [Guoxu Liu, Beibei Fan, Youchao Qi, Kai Han, Jie Cao, Xianpeng Fu, Zhaozheng Wang, Tianzhao Bu, Jianhua Zeng, Sicheng Dong, Likun Gong, Zhong Lin Wang, Chi Zhang]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集