The polymer-based triboelectric nanogenerator (TENG) has long grappled with the constraint of limited current density (CD), whereas semiconductor-based triboelectric nanogenerators, using the tribovoltaic effect, have shown promising potential for achieving high current density. This study introduces an effective solution─a direct current tribovoltaic nanogenerator with ultrahigh current density─founded on a flexible organic semiconductor textile activated by solvents. By introducing 95% ethyl alcohol, an ultrahigh current density of 8.75 A/m2 and peak power density of 1.07 W/m2 are demonstrated, marking a striking enhancement of 438-fold and 170-fold, respectively, in comparison to the friction surface without 95% ethyl alcohol. The activation mechanism is that the poly(vinyl alcohol) dissolution by solvents exposes more PEDOT:PSS, and the formation of hydrogen bonds with PSS– releases more active PEDOT+. This advancement finds practical utility, as evidenced by successful demonstrations involving cell phone charging and small motor propulsion. The breakthrough unveiled in this work presents vistas for the widespread application of flexible organic semiconductor textile-based tribovoltaic nanogenerators, offering exciting opportunities for biomechanical energy harvesting.
周老师: 13321314106
王老师: 17793132604
邮箱号码: lub@licp.cas.cn