Comparative Research in the Field of the Parametric Effect of Lubricant Cavitation Initiation and Development on Friction and Wear in Piston Ring and Cylinder Liner Assemblies

Part of the gas phase within the bearing emanates from the gaseous lubricating medium generated by the phase transition of the liquid lubricant under low pressure, while the remaining portion originates from the expansion of gases, such as air, present in the lubricant. This study delves into the impact of vapor and gas cavitation on the stability of the rotor-journal bearing system. Utilizing computational fluid dynamics (CFD), a 3D transient lubrication model is developed for the rotor-journal bearing system. This model integrates a combined cavitation approach, encompassing both vaporous and gaseous cavitation phenomena. Based on a new structured dynamic mesh method, the journal orbits are obtained when the journal moves in the rotor-journal bearing system. In vaporous and gaseous cavitation, shear stress and non-condensable gases (NCG) are incorporated successively. Compared with the combined cavitation model, the basic cavitation model journal orbit amplitude is significantly larger than the combined cavitation model. The carrying capacity of journal bearings under the basic cavitation model is overestimated, leading to a more conservative prediction for system stability.

相关文章

  • Hierarchical MoS2-Oleogel in Porous Polyimides: A Self-Adaptive Confined Lubrication Strategy for Ultralow Friction and Wear
    [Di Yang, Liqiang Zhang, Tongtong Yu, Changhe Du, Liucheng Wang, Wenpeng Wang, Yange Feng, Weimin Liu, Daoai Wang]
  • Versatile Superlubricity via Boronizing on Engineering Alloys: Insights into In Situ Passivation Mechanism
    [Hongxing Wu, Junqin Shi, Hang Li, Shaochong Yin, Yixuan Zhang, Ke Hua, Haifeng Wang, Feng Zhou, Weimin Liu]
  • Quaternary Layered Boride Ti4MoSiB2: A Structure-Function Integrated High-Temperature Self-Lubricating and Negative-Wear Material
    [Hongbin Li, Hengzhong Fan, Yunfeng Su, Zhenhua Li, Shuna Chen, Wanxin Wei, Faqiang Chen, Xiande Zheng, Junjie Song, Tianchang Hu, Yongsheng Zhang, Zhiwen Jin, Litian Hu, Weimin Liu]
  • qq

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ex

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    yx

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    ph

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    广告图片

    润滑集