Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing

Herein, a superhydrophobic surface was designed and fabricated based on the “lotus effect” construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm. The composite coating formed by applying this superhydrophobic surface to magnesium (Mg) alloy exhibited a high corrosion potential (Ecorr = −0.86 V) and a low corrosion current density (icorr = 3.66 × 10–12 A·cm–2) compared to the uncoated Mg substrate (Ecorr = −1.53 V, icorr = 1.14 × 10–4 A·cm–2), indicating that the coating effectively enhances the corrosion resistance of the substrate. Notably, the superhydrophobic composite coating demonstrated corrosion resistance durability with a high charge transfer resistance (Rct = 5.12 × 109 Ω·cm2) after 5 days of immersion in 3.5 wt % NaCl aqueous solution. In addition, the as-prepared superhydrophobic surface also displayed excellent performance in self-cleaning and anti-icing. We believe that this work can facilitate the application of ZIFs on superhydrophobic surfaces and provide a new approach for metal corrosion protection.

qq

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ex

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

yx

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

ph

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

广告图片

润滑集